Exergy Analysis and Thermoeconomics of Buildings


Book Description

Quantifying exergy losses in the energy supply system of buildings reveals the potential for energy improvement, which cannot be discovered using conventional energy analysis. Thermoeconomics combines economic and thermodynamic analysis by applying the concept of cost (an economic concept) to exergy, as exergy is a thermodynamic property fit for this purpose, in that it combines the quantity of energy with its quality factor. Exergy Analysis and Thermoeconomics of Buildings applies exergy analysis methods and thermoeconomics to the built environment. The mechanisms of heat transfer throughout the envelope of buildings are analyzed from an exergy perspective and then to the building thermal installations, analyzing the different components, such as condensing boilers, absorption refrigerators, microcogeneration plants, etc., including solar installations and finally the thermal facilities as a whole. A detailed analysis of the cost formation process is presented, which has its physical roots firmly planted in the second law of thermodynamics. The basic principles and the rules of cost allocation, in energy units (exergy cost), in monetary units (exergoeconomic cost), and in CO2 emissions (exergoenvironmental cost), based on the so-called Exergy Cost Theory are presented and applied to thermal installations of buildings. Clear and rigorous in its exposition, Exergy Analysis and Thermoeconomics of Buildings discusses exergy analysis and thermoeconomics and the role they could play in the analysis and design of building components, either the envelope or the thermal facilities, as well as the diagnosis of thermal installations. This book moves progressively from introducing the basic concepts to applying them. Exergy Analysis and Thermoeconomics of Buildings provides examples of specific cases throughout this book. These cases include real data, so that the results obtained are useful to interpret the inefficiencies and losses that truly occur in actual installations; hence, the assessment of their effects encourages the manner to improve efficiency. Applies exergy analysis methods for the installation of building thermal facilities equipment components, including pipes, valves, heat exchangers, boilers and heat pumps Helps readers determine the operational costs of heating and cooling building systems Includes exergy analysis methods that are devoted to absorption refrigerators, adsorption cooling systems, basic air conditioning processes, ventilation systems and solar systems, either thermal and PV Discusses the direct application of exergy analysis concepts, including examples of buildings with typical heating, DHW and air conditioning installations




Exergy Analysis of the Air Handling Unit at Variable Reference Temperature


Book Description

This book explore how exergy analysis can be an important tool for assessing the sustainability of buildings. Building's account or around 40 percent of total energy conditions depending on local climatic conditions. Due to its nature, exergy analysis should become a valuable tool for the assessment of building sustainability, first of all considering their scope and the dependence of their energy demands on the local environmental and climatic conditions. Nonetheless, methodological bottlenecks do exist and a solution to some of them is proposed in this monograph. First and foremost, there is the still-missing thermodynamically viable method to apply the variable reference environment temperature in exergy analysis. The monograph demonstrates that a correct approach to the directions of heat exergy flows, when the reference temperature is considered variable, allows reflecting the specifics of energy transformation processes in heating, ventilation, and air conditioning systems in a thermodynamically viable way. The outcome of the case analysis, which involved coordinated application of methodologies based on the Carnot factor and coenthalpies, was exergy analysis indicators – exergy efficiency and exergy destroyed – obtained for air handling units and their components. These methods can be used for the purposes of analysing and improving building technical systems that, as a rule, operate at a variable environment temperature. Exergy analysis becomes more reliable in designing dynamic models of such systems and their exergy-based control algorithms. This would improve the possibility to deploy them in building information modelling (BIM) technologies and the application of life cycle analysis (LCA) principles in designing buildings, thus improving the quality of the decision-making process. Furthermore, this would benefit other systems where variable reference environment plays a key role. This book is relevant to academics, students and researchers in the field of thermodynamic analysis considering HVAC equipment, building energy systems, energy efficiency, sustainable development of technical systems of energy, mechanics, and construction, as well as preservation of natural resources. Planners, designers, engineers of HVAC equipment, building energy systems, and developers of appropriate simulation tools (e.g., BIM) will also find it of use.







Application of Exergy


Book Description

The main scope of this study is to emphasize exergy efficiency in all fields of industry. The chapters collected in the book are contributed by invited researchers with a long-standing experience in different research areas. I hope that the material presented here is understandable to a wide audience, not only energy engineers but also scientists from various disciplines. The book contains seven chapters in three sections: (1) "General Information about Exergy," (2) "Exergy Applications," and (3) "Thermoeconomic Analysis." This book provides detailed and up-to-date evaluations in different areas written by academics with experience in their fields. It is anticipated that this book will make a scientific contribution to exergy workers, researchers, academics, PhD students, and other scientists in both the present and the future.




Comparison and Optimization of Building Energy Supply Systems Through Exergy Analysis and Its Perspectives


Book Description

Growing concerns on environmental problems related to current energy use have emphasized the importance of "energy-saving measures" and the necessity for an increased efficiency in all forms of energy utilization. Being responsible for around 40% of the final energy use in Germany, buildings are major contributors to energy related problems and a sector where a more rational and efficient energy use is absolutely necessary. By showing the thermodynamic efficiency of an energy system, exergy analysis is expected to be a valuable tool for developing and designing more efficient energy supply systems in buildings, similarly as it has contributed to raise the efficiency of power plants. In this thesis, the usability and added value of exergy analysis applied to different building energy systems is investigated. Exergy analysis is, herefore, compared to conventional primary energy assessment and the different results and conclusions obtained from both methods are thoroughly studied and discussed.




Mediterranean Green Buildings & Renewable Energy


Book Description

This book highlights scientific achievements in the key areas of sustainable electricity generation and green building technologies, as presented in the vital bi-annual World Renewable Energy Network’s Med Green Forum. Renewable energy applications in power generation and sustainable development have particular importance in the Mediterranean region, with its rich natural resources and conducive climate, making it a perfect showcase to illustrate the viability of using renewable energy to satisfy all energy needs. The papers included in this work describe enabling policies and offer pathways to further develop a broad range of renewable energy technologies and applications in all sectors – for electricity production, heating and cooling, agricultural applications, water desalination, industrial applications and for the transport sector.




Exergy


Book Description

Many people, professionals and non-professionals alike, recognize that it is of critical importance to solve global energy and environmental issues. For this purpose, it is essential to have a scientific understanding of what is meant by the “energy” issue is and the “environmental” issue. The concept of “exergy” is a scientific concept that exactly fits. The concept of ‘energy’ is a scientifically-well established concept, namely ‘to be conserved’. Then the question is what is really consumed. Exergy: Theory and Applications in the Built Environment is dedicated to answer this fundamental question by discussing the theory of “exergy” and by demonstrating its use extensively to describe a variety of systems in particular for built-environmental conditioning. Our immediate environmental space works within the flow of energy and matter in an “exergy-entropy” process, and the built environment can be designed with these energy & environmental issues in mind. Exergy: Theory and Applications in the Built Environment introduces readers who are not familiar with thermodynamics to the concept of exergy with a variety of discussion on the built-environmental space such as heating, cooling, lighting, and others. Readers, including students, researchers, planners, architects and engineers, will obtain a better picture of a sustainable built-environment.




Exergy Analysis of Heating, Refrigerating and Air Conditioning


Book Description

Improve and optimize efficiency of HVAC and related energy systems from an exergy perspective. From fundamentals to advanced applications, Exergy Analysis of Heating, Air Conditioning, and Refrigeration provides readers with a clear and concise description of exergy analysis and its many uses. Focusing on the application of exergy methods to the primary technologies for heating, refrigerating, and air conditioning, Ibrahim Dincer and Marc A. Rosen demonstrate exactly how exergy can help improve and optimize efficiency, environmental performance, and cost-effectiveness. The book also discusses the analysis tools available, and includes many comprehensive case studies on current and emerging systems and technologies for real-world examples. From introducing exergy and thermodynamic fundamentals to presenting the use of exergy methods for heating, refrigeration, and air conditioning systems, this book equips any researcher or practicing engineer with the tools needed to learn and master the application of exergy analysis to these systems. Explains the fundamentals of energy/exergy for practitioners/researchers in HVAC&R fields for improving efficiency Covers environmental assessments and economic evaluations for a well-rounded approach to the subject Includes comprehensive case studies on both current and emerging systems/technologies Provides examples from a range of applications – from basic HVAC&R to more diverse processes such as industrial heating/cooling, cogeneration and trigeneration, and thermal storage




Exergy Analysis for Energy Conversion Systems


Book Description

Discover a straightforward and holistic look at energy conversion and conservation processes using the exergy concept with this thorough text. Explains the fundamental energy conversion processes in numerous diverse systems, ranging from jet engines and nuclear reactors to human bodies. Provides examples for applications to practical energy conversion processes and systems that use our naturally occurring energy resources, such as fossil fuels, solar energy, wind, geothermal, and nuclear fuels. With more than one-hundred diverse cases and solved examples, readers will be able to perform optimizations for a cleaner environment, a sustainable energy future, and affordable energy generation. An essential tool for practicing scientists and engineers who work or do research in the area of energy and exergy, as well as graduate students and faculty in chemical engineering, mechanical engineering and physics.




Photovoltaic Thermal Passive House System


Book Description

Sustainable Advanced Solar Passive House provides a platform to disseminate knowledge regarding the basics of solar energy, heat transfer, and solar houses, including designing concepts. Apart from a brief introduction to solar physics and thermodynamics, the book primarily deals with the technical description of solar houses and associated concepts. Different types of photovoltaic modules and their integration with the buildings are discussed with case studies, including energy balance equations and fundamental energy matrices. It discusses concepts like energy matrices, solar passive heating/cooling, architecture design, low-cost building, energy/exergy analysis, building integrated photovoltaic, and energy conservation.