Experience Curves for Energy Technology Policy


Book Description

The fact that market experience improves performance and reduces prices is well known and widely exploited in technology-intensive industries, but sparsely used in analysis for energy technology policy. Knowledge of the "experience effect" can help in the design of efficient programmes for deploying of environment-friendly technologies. The effect must be taken into account when estimating the future costs of achieving targets, including targets for carbon dioxide reduction. This book discusses issues raised by the "experience effect", such as price-cost cycles, competition for learning opportunities in the market, risk of "technology lockout" and the effects of research, development and deployment policies on technology learning. Case studies illustrate how experience curves can be used to set policy targets and to design policy measures that will encourage both investment in and use of environment-friendly energy technologies. Low-cost paths to stabilising CO2 emissions are explored.




Technological Learning in the Transition to a Low-Carbon Energy System


Book Description

Technological Learning in the Transition to a Low-Carbon Energy System: Conceptual Issues, Empirical Findings, and Use in Energy Modeling quantifies key trends and drivers of energy technologies deployed in the energy transition. It uses the experience curve tool to show how future cost reductions and cumulative deployment of these technologies may shape the future mix of the electricity, heat and transport sectors. The book explores experience curves in detail, including possible pitfalls, and demonstrates how to quantify the 'quality' of experience curves. It discusses how this tool is implemented in models and addresses methodological challenges and solutions. For each technology, current market trends, past cost reductions and underlying drivers, available experience curves, and future prospects are considered. Electricity, heat and transport sector models are explored in-depth to show how the future deployment of these technologies—and their associated costs—determine whether ambitious decarbonization climate targets can be reached - and at what costs. The book also addresses lessons and recommendations for policymakers, industry and academics, including key technologies requiring further policy support, and what scientific knowledge gaps remain for future research. - Provides a comprehensive overview of trends and drivers for major energy technologies expected to play a role in the energy transition - Delivers data on cost trends, helping readers gain insights on how competitive energy technologies may become, and why - Reviews the use of learning curves in environmental impacts for lifecycle assessments and energy modeling - Features social learning for cost modeling and technology diffusion, including where consumer preferences play a major role




Renewables in Future Power Systems


Book Description

The book examines the future deployment of renewable power from a normative point of view. It identifies properties characterizing the cost-optimal transition towards a renewable power system and analyzes the key drivers behind this transition. Among those drivers, particular attention is paid to technological cost reductions and the implications of uncertainty. From a methodological perspective, the main contributions of this book relate to the field of endogenous learning and uncertainty in optimizing energy system models. The primary objective here is closing the gap between the strand of literature covering renewable potential analyses on the one side and energy system modeling with endogenous technological change on the other side. The models applied in this book demonstrate that fundamental changes must occur to transform today's power sector into a more sustainable one over the course of this century. Apart from its methodological contributions, this work is also intended to provide practically relevant insights regarding the long-term competitiveness of renewable power generation.




Delivering a Low Carbon Electricity System


Book Description

A systematic analysis of the issues surrounding the creation of a low-carbon electricity sector.




The Power of Change


Book Description

Electricity, supplied reliably and affordably, is foundational to the U.S. economy and is utterly indispensable to modern society. However, emissions resulting from many forms of electricity generation create environmental risks that could have significant negative economic, security, and human health consequences. Large-scale installation of cleaner power generation has been generally hampered because greener technologies are more expensive than the technologies that currently produce most of our power. Rather than trade affordability and reliability for low emissions, is there a way to balance all three? The Power of Change: Innovation for Development and Deployment of Increasingly Clean Energy Technologies considers how to speed up innovations that would dramatically improve the performance and lower the cost of currently available technologies while also developing new advanced cleaner energy technologies. According to this report, there is an opportunity for the United States to continue to lead in the pursuit of increasingly clean, more efficient electricity through innovation in advanced technologies. The Power of Change: Innovation for Development and Deployment of Increasingly Clean Energy Technologies makes the case that America's advantagesâ€"world-class universities and national laboratories, a vibrant private sector, and innovative states, cities, and regions that are free to experiment with a variety of public policy approachesâ€"position the United States to create and lead a new clean energy revolution. This study focuses on five paths to accelerate the market adoption of increasing clean energy and efficiency technologies: (1) expanding the portfolio of cleaner energy technology options; (2) leveraging the advantages of energy efficiency; (3) facilitating the development of increasing clean technologies, including renewables, nuclear, and cleaner fossil; (4) improving the existing technologies, systems, and infrastructure; and (5) leveling the playing field for cleaner energy technologies. The Power of Change: Innovation for Development and Deployment of Increasingly Clean Energy Technologies is a call for leadership to transform the United States energy sector in order to both mitigate the risks of greenhouse gas and other pollutants and to spur future economic growth. This study's focus on science, technology, and economic policy makes it a valuable resource to guide support that produces innovation to meet energy challenges now and for the future.




Energy Technology Innovation


Book Description

An edited volume on factors determining success or failure of energy technology innovation, for researchers and policy makers.




Technological Learning in the Energy Sector


Book Description

'This expert analysis provides an important contribution to understanding the technicalities of energy technology cost dynamics. Given the urgent need for delivery of low-cost renewable energy technologies in particular, it is vital to understand how to accelerate this process of technological learning.' - Miguel Mendonca, World Future Council, Germany




The Power of Renewables


Book Description

The United States and China are the world's top two energy consumers and, as of 2010, the two largest economies. Consequently, they have a decisive role to play in the world's clean energy future. Both countries are also motivated by related goals, namely diversified energy portfolios, job creation, energy security, and pollution reduction, making renewable energy development an important strategy with wide-ranging implications. Given the size of their energy markets, any substantial progress the two countries make in advancing use of renewable energy will provide global benefits, in terms of enhanced technological understanding, reduced costs through expanded deployment, and reduced greenhouse gas (GHG) emissions relative to conventional generation from fossil fuels. Within this context, the U.S. National Academies, in collaboration with the Chinese Academy of Sciences (CAS) and Chinese Academy of Engineering (CAE), reviewed renewable energy development and deployment in the two countries, to highlight prospects for collaboration across the research to deployment chain and to suggest strategies which would promote more rapid and economical attainment of renewable energy goals. Main findings and concerning renewable resource assessments, technology development, environmental impacts, market infrastructure, among others, are presented. Specific recommendations have been limited to those judged to be most likely to accelerate the pace of deployment, increase cost-competitiveness, or shape the future market for renewable energy. The recommendations presented here are also pragmatic and achievable.




Electricity from Renewable Resources


Book Description

A component in the America's Energy Future study, Electricity from Renewable Resources examines the technical potential for electric power generation with alternative sources such as wind, solar-photovoltaic, geothermal, solar-thermal, hydroelectric, and other renewable sources. The book focuses on those renewable sources that show the most promise for initial commercial deployment within 10 years and will lead to a substantial impact on the U.S. energy system. A quantitative characterization of technologies, this book lays out expectations of costs, performance, and impacts, as well as barriers and research and development needs. In addition to a principal focus on renewable energy technologies for power generation, the book addresses the challenges of incorporating such technologies into the power grid, as well as potential improvements in the national electricity grid that could enable better and more extensive utilization of wind, solar-thermal, solar photovoltaics, and other renewable technologies.