Unsteady Transonic Aerodynamics


Book Description

This volume complements Transonic aerodynamics (v.81 in the series) which is concerned with steady flow. This is the only book to address the subject of unsteady transonic aerodynamics, a field much different from steady aerodynamics. The most pronounced difference is the complex shock wave motions







Transonic Aerodynamics


Book Description

This volume offers exciting results, perspectives, and case studies for the treatment of problems arising in transonic aerodynamics. New advances including triple deck theory, analysis of stagnation at the nose of a body, transonic choked flow, and the transonic area rule are presented. Interest in analyzing the transonic range of flight, its stability properties, and especially the question of designing reduced drag (shockless or weak shock) airfoils keeps growing. Present day commercial aircraft cruise in the transonic range. Mechanical and aeronautical engineers interested in compressible fluid flows, design of optimal wings, and an understanding of transonic flow held about wings and airfoils will find the book invaluable. This book is understandable to those with a knowledge of continuum mechanics (fluids) and asymptotic methods. It is appropriate for graduate courses in aerodynamics and mathematical methods.










Monthly Catalog of United States Government Publications


Book Description

February issue includes Appendix entitled Directory of United States Government periodicals and subscription publications; September issue includes List of depository libraries; June and December issues include semiannual index







Introduction to Aeroelasticity


Book Description

This textbook is intended as a core text for courses on aeroelasticity or aero-elasto-mechanics for senior undergraduate/graduate programs in aerospace and mechanical engineering. The book focuses on the basic understanding of the concepts required in learning about aeroelasticity, from observation, reasoning, and understanding fundamental physical principles. Fundamental and simple mathematics will be introduced to describe the features of aeroelastic problems, and to devise simple concurrent physical and mathematical modeling. It will be accompanied by the introduction and understandings of the mechanisms that create the interactions that generate the aeroelastic phenomena considered. The students will also be led to the relation between observed phenomena, assumptions that may have to be adopted to arrive at physical and mathematical modelling, interpreting and verifying the results, and the accompanied limitations, uncertainties and inaccuracies. The students will also be introduced to combine engineering problem solving attitude and determination with simple mechanics problem-solving skills that coexist harmoniously with a useful mechanical intuition.




Fundamentals of Modern Unsteady Aerodynamics


Book Description

In this book, the author introduces the concept of unsteady aerodynamics and its underlying principles. He provides the readers with a comprehensive review of the fundamental physics of free and forced unsteadiness, the terminology and basic equations of aerodynamics ranging from incompressible flow to hypersonics. The book also covers modern topics related to the developments made in recent years, especially in relation to wing flapping for propulsion. The book is written for graduate and senior year undergraduate students in aerodynamics and also serves as a reference for experienced researchers. Each chapter includes ample examples, questions, problems and relevant references. The treatment of these modern topics has been completely revised end expanded for the new edition. It now includes new numerical examples, a section on the ground effect, and state-space representation.