An Experimental Investigation of the Effect of Fuel Droplet Size on the Vaporization Process in a Turbulent Environment at Elevated Temperature and Pressure


Book Description

The performance of liquid-fuelled spray combustion systems has a massive impact on the efficiency of energy production in many sectors across the globe. Realistic combustors generate sub 100-μm droplets and operate under high pressure and temperature in strong turbulence. Investigations into droplet evaporation and combustion provide fundamental knowledge and validation data regarding the behaviour of sprays, and although single droplet approaches have been a staple of energy research for many decades, there is little information regarding the effect of turbulence and initial diameter, especially micro-sized, on droplet evaporation rates. The present experimental study develops, interprets, and correlates the results of almost 500 tests performed on isolated heptane and decane droplets. Droplets in the range of 110 - 770 μm (initial diameter) were generated and suspended on small intersecting micro-fibers in a spherical fan-driven chamber and exposed to quasi-zero mean turbulence of intensity up to 1.5 m/s, temperatures ranging from 25 - 100°C, and pressures between 1 and 10 bar. The results indicate that droplet size has a major influence on evaporation rate, as measured by the temporal reduction in droplet surface area, when the environment is turbulent. Evaporation rates increased with both initial diameter and turbulence intensity at all test conditions. The effectiveness of turbulence, defined as the ability of turbulence to improve the evaporation rate over the rate of a stagnant droplet at identical ambient conditions, increased with pressure but decreased with temperature. Both the ratio of Kolmogorov length scale to droplet diameter and the theoretical molar concentration gradient of fuel at the droplet surface are found to be excellent predictors of turbulence effectiveness. Correlation approaches utilizing a turbulent Reynolds number or a vaporization Damköhler number are suggested to predict the evaporation rate of a single droplet exposed to a purely turbulent flow field.




NASA Scientific and Technical Reports


Book Description
















Molecular Thermodynamics of Fluid-Phase Equilibria


Book Description

The classic guide to mixtures, completely updated with new models, theories, examples, and data. Efficient separation operations and many other chemical processes depend upon a thorough understanding of the properties of gaseous and liquid mixtures. Molecular Thermodynamics of Fluid-Phase Equilibria, Third Edition is a systematic, practical guide to interpreting, correlating, and predicting thermodynamic properties used in mixture-related phase-equilibrium calculations. Completely updated, this edition reflects the growing maturity of techniques grounded in applied statistical thermodynamics and molecular simulation, while relying on classical thermodynamics, molecular physics, and physical chemistry wherever these fields offer superior solutions. Detailed new coverage includes: Techniques for improving separation processes and making them more environmentally friendly. Theoretical concepts enabling the description and interpretation of solution properties. New models, notably the lattice-fluid and statistical associated-fluid theories. Polymer solutions, including gas-polymer equilibria, polymer blends, membranes, and gels. Electrolyte solutions, including semi-empirical models for solutions containing salts or volatile electrolytes. Coverage also includes: fundamentals of classical thermodynamics of phase equilibria; thermodynamic properties from volumetric data; intermolecular forces; fugacities in gas and liquid mixtures; solubilities of gases and solids in liquids; high-pressure phase equilibria; virial coefficients for quantum gases; and much more. Throughout, Molecular Thermodynamics of Fluid-Phase Equilibria strikes a perfect balance between empirical techniques and theory, and is replete with useful examples and experimental data. More than ever, it is the essential resource for engineers, chemists, and other professionals working with mixtures and related processes.