Experimental and Numerical Stability Investigations on Natural Circulation Boiling Water Reactors


Book Description

In the design of novel nuclear reactors active systems are replaced by passive ones in order to reduce the risk of failure. For that reason natural circulation is being considered as the primary cooling mechanism in next generation nuclear reactor designs such as the natural circulation boiling water reactor (BWR). In such a reactor, however, the flow is not a controlled parameter but is dependent on the power. As a result, the dynamical behavior significantly differs from that in conventional forced circulation BWRs. For that reason, predicting the stability characteristics of these reactors has to be carefully studied. In this work, a number of open issues are investigated regarding the stability of natural circulation BWRs (e.g. margins to instabilities at rated conditions, interaction between the thermal-hydraulics and the neutronics, and the occurrence of flashing induced instabilities) with a strong emphasis on experimental evidence.










An Experimental and Modelling Study of Natural-circulation Boiling Water Reactor Dynamics


Book Description

Contents of this Doctoral Dissertation include: Understanding the linear stability characteristics of BWRs, Experiments on the stability of the Desire facility, Applications of the reducer-order model, Numerical analysis of the nonlinear dynamics of BWRs, Experiments on the nonlinear dynamics of natural-circulation two-phase flows, Experiments on the neutronic-thermalhydraulic stability, Conclusions and Discussion




Energy Research Abstracts


Book Description

Semiannual, with semiannual and annual indexes. References to all scientific and technical literature coming from DOE, its laboratories, energy centers, and contractors. Includes all works deriving from DOE, other related government-sponsored information, and foreign nonnuclear information. Arranged under 39 categories, e.g., Biomedical sciences, basic studies; Biomedical sciences, applied studies; Health and safety; and Fusion energy. Entry gives bibliographical information and abstract. Corporate, author, subject, report number indexes.




ERDA Energy Research Abstracts


Book Description




ERDA Energy Research Abstracts


Book Description




Theoretical Feedback Analysis in Boiling Water Reactors


Book Description

The dynamic behavior of boiling-water reactors for small perturbations was investigated in a systematic way. General expressions for the transfer functions associated with the individual feedback mechanisms were obtained for an arbitrary flux distribution, weighting function, and steam velocity distribution. Specific forms were derived in the case of a first power flux weighting, a uniform steam velocity distribution, and a sinusoidal flux distribution with an adjustable wave length. These forms were simplified and single time-constant transfer functions were obtained. The error involved in the lumped time-constant approximation was shown to be as large as 4 db in amplitude in certain feedback mechanisms. Theoretical results were applied to the experimental power-void transfer function obtained at Ramo-Wooldridge Research Laboratory, and to the EBWR transfer function. In the former case, the agreement was found to be reasonably good, but yet more systematic experimental data were needed to reach a definite conclusion as to the validity of the proposed model, which assumes a time lag associated with steam formation and a steam perturbation speed greater than the steady-state steam velocity. In the second application, the agreement between the experimental and calculated reactor responses was proved to be better than 5 db in amplitude and 10 deg in phase, in the entire frequency range from 0.01 to 100 rad/sec.