Atomization and Sprays


Book Description

The second edition of this long-time bestseller provides a framework for designing and understanding sprays for a wide array of engineering applications. The text contains correlations and design tools that can be easily understood and used in relating the design of atomizers to the resulting spray behavior. Written to be accessible to readers with a modest technical background, the emphasis is on application rather than in-depth theory. Numerous examples are provided to serve as starting points for using the information in the book. Overall, this is a thoroughly updated edition that still retains the practical focus and readability of the original work by Arthur Lefebvre.




Atomization and Sprays


Book Description

Atomization and Sprays examines the atomization of liquids and characteristics of sprays. It explains the physical processes of atomization as well as guidelines for designing atomizers. In addition, it demonstrates how the importance of the size and velocity of a particle contributes to improved spray characterization. Coverage includes general co




Combustion of Liquid Fuel Sprays


Book Description

Combustion of Liquid Fuel Sprays outlines the fundamentals of the combustion of sprays in a unified way which may be applied to any technological application. The book begins with a discussion of the general nature of spray combustion, the sources of liquid fuels used in spray combustion, biomass sources of liquid fuels, and the nature and properties of fuel oils. Subsequent chapters focus on the properties of sprays, the atomization of liquid fuels, and the theoretical modeling of the behavior of a spray flame in a combustion chamber. The nature and control of pollutants from spray combustion, the formation of deposits in oil-fired systems, and the combustion of sprays in furnaces and engines are elucidated as well. The text is intended for students undertaking courses or research in fuel, combustion, and energy studies.




Industrial Sprays and Atomization


Book Description

An extensive critical compilation of the wide range of manufacturing processes that involve the application of spray technology, this book covers design of atomizers as well as the performance of plant and their corresponding spray systems. The needs of practising engineers from different disciplines: project managers, and works, maintenance and design engineers are catered for. Of interest to researchers in the field of liquid sprays, the book includes outlines of the contemporary and possible future research and challenges in the different fields of application and deals with: • sprays and their production; • sprays in industrial production processes; • processes involving vaporisation and cooling or cleaning of gases; • spray-surface impact processes; • fuel sprays for fixed plant; • spraying of hot surfaces for steel making and other metals; • spraying of molten metals. Guidance is given for the analysis and interpretation of experimental data obtained using different measurement techniques.







Mechanisms of Smoke Reduction in the High-Pressure Combustion of Emulsified Fuels. Volume II. Experimental and Theoretical Study of Evaporating Emulsified and Neat Fuel Sprays


Book Description

This report documents progress made during the second year of a three-year study of the atomization and evaporation characteristics of emulsified and alternative fuels at conditions typical of those found in gas turbine engines. The development of experimental techniques suitable for drop size measurements in realistic polydisperse fuel sprays in high pressure/temperature air has been the first goal of this year's program. The second area of interest has been the development of detailed drop models which predict the heat-up, evaporation, and trajectory of fuel sprays and the resulting size distribution parameters. In addition to these two areas, a facility was constructed during the first year of this program to allow for the containment of sprays in high pressure/temperature moving air with optical access for spray size measurements. These experimental and analytical tools have and will continue to be used to study the differences in atomization/evaporation of emulsified and neat fuels, and various other fuels at interest to the U.S. Navy.




Handbook of Atomization and Sprays


Book Description

Atomization and sprays are used in a wide range of industries: mechanical, chemical, aerospace, and civil engineering; material science and metallurgy; food; pharmaceutical, forestry, environmental protection; medicine; agriculture; meteorology and others. Some specific applications are spray combustion in furnaces, gas turbines and rockets, spray drying and cooling, air conditioning, powdered metallurgy, spray painting and coating, inhalation therapy, and many others. The Handbook of Atomization and Sprays will bring together the fundamental and applied material from all fields into one comprehensive source. Subject areas included in the reference are droplets, theoretical models and numerical simulations, phase Doppler particle analysis, applications, devices and more.




Breakup of Liquid Sheets and Jets


Book Description

This book, first published in 2003, is an exposition of what we knew about the physics underlying the onset of instability in liquid sheets and jets. Wave motion and breakup phenomena subsequent to the onset of instability are carefully explained. Physical concepts are established through rigorous mathematics, accurate numerical analyses and comparison of theory with experiment. Exercises are provided for students, and these help familiarize the reader with the required mathematical tools. This book further provides a rational basis for designing equipment and processes involving the phenomena of sheet and jet breakup. Researchers interested in transition to turbulence, hydrodynamic stability or combustion will find this book a highly useful resource, whether their background lies in engineering, physics, chemistry, biology, medicine or applied mathematics.




AN EXPERIMENTAL AND COMPUTATIONAL STUDY OF FUEL SPRAY INTERACTION


Book Description

Abstract : An efficient spray injection results in better vaporization and air-fuel mixing, leading to combustion stability and reduction of emissions in the internal combustion (IC) engines. The impingement of liquid fuels on chamber wall or piston surface in IC engines is a common phenomenon and fuel film formed in the spray-piston or cylinder wall impingement plays a critical role in engine performance and emissions. Therefore, the study of the spray impingement on the chamber wall or position surface is necessary. To understand the spray-wall interaction, a single droplet impingement on a solid surface with different conditions was first examined. The droplet-wall interaction outcomes, in particular focusing on the splashing criteria, were inspected and post-impingement characterizations including spreading factor, height ratio, contact line velocity, and dynamic contact angle was further analyzed based on the experimental data. The non-evaporation volume of fluid (VOF) model based on Eulerian approach was used to characterize single droplet impinging on the wall and provide a better understanding of the dynamic impact process. In addition, the study of droplet-to-droplet collision and multi-droplet impingement on a solid surface are performed, which is essential to aid in the spray-wall impingement investigation. As well, due to the evaporation drawing more attention during the engine combustion process, an evaporation VOF sub-model was developed and applied to multi-droplet impingement on a hot surface to qualitatively and quantitatively analyze the vaporizing process as droplets impacting onto the hot surface. After that, the non-vaporizing and vaporizing spray characteristics of spray-wall impingement at various operating conditions relevant to diesel engines were undertaken, with spray characterized using schlieren and Mie scattering diagnostics, as well as Refractive Index Matching (RIM) technique. Free and impinged spray structures and deposited wall-film formation and evaporation were qualitatively analyzed, spray properties and wall-film properties were quantified, and surface temperature and heat flux were measured. An Eulerian-Lagrangian modeling approach was employed to characterize the spray-wall interactions by means of a Reynolds-Averaged Navier-Stokes (RANS) formulation. The local spray characteristics in the vicinity of the wall and the local spray morphology near the impingement location were studied. Furthermore, multiple spray-to-spray collision derived from droplet-to-droplet collision, considering as one of the advanced injection strategies to enhance the engine performance, was studied at various gasoline engine conditions to explore the effect of colliding spray on spray related phenomena like atomization, vaporization, and mixing. Spray characteristics were obtained by the schlieren diagnostics and the experimental validated Computational Fluid Dynamic (CFD) simulations were based on Eulerian-Lagrangian approach to understand the mechanism behind the collisions of sprays and characterize the different types of multiple spray-to-spray collision. In summary, on the strength of the study of droplet-wall impingement and droplet-to-droplet collision at non-evaporation and evaporation states, the main objective of this dissertation is to enhance the understanding of spray-wall impingement and multiple spray-to-spray collision under diesel or gasoline engine conditions from both experiments and CFD simulations, therefore providing feedbacks to the ultimate task in future development and application of a more reliable and effective fuel injection system.