Experiments in International Benchmarking of US Research Fields


Book Description

How can the federal government gauge the overall health of scientific researchâ€"as a whole and in its partsâ€"and determine whether national funding adequately supports national research objectives? It is feasible to monitor US performance with field-by-field peer assessments. This might be done through the establishment of independent panels consisting of researchers who work in a field, individuals who work in closely related fields, and research "users" who follow the field closely. Some of these individuals should be outstanding foreign scientists in the field being examined. This technique of comparative international assessments is also known as international benchmarking. Experiments in International Benchmarking of U.S. Research Fields evaluates the feasibility and utility of the benchmarking technique. In order to do this, the report internationally benchmarks three fields: mathematics, immunology, and materials science and engineering, then summarizes the results of these experiments.




International Benchmarking of U.S. Chemical Engineering Research Competitiveness


Book Description

More than $400 billion worth of products rely on innovations in chemistry. Chemical engineering, as an academic discipline and profession, has enabled this achievement. In response to growing concerns about the future of the discipline, International Benchmarking of U.S. Chemical Engineering Research Competitiveness gauges the standing of the U.S. chemical engineering enterprise in the world. This in-depth benchmarking analysis is based on measures including numbers of published papers, citations, trends in degrees conferred, patent productivity, and awards. The book concludes that the United States is presently, and is expected to remain, among the world's leaders in all subareas of chemical engineering research. However, U.S. leadership in some classical and emerging subareas will be strongly challenged. This critical analysis will be of interest to practicing chemical engineers, professors and students in the discipline, economists, policy makers, major research university administrators, and executives in industries dependent upon innovations in chemistry.




Benchmarking U.S. Science


Book Description




Benchmarking U.S. Science


Book Description




Benchmarking the Competitiveness of the United States in Mechanical Engineering Basic Research


Book Description

Mechanical engineering is critical to the design, manufacture, and operation of small and large mechanical systems throughout the U.S. economy. This book highlights the main findings of a benchmarking exercise to rate the standing of U.S. mechanical engineering basic research relative to other regions or countries. The book includes key factors that influence U.S. performance in mechanical engineering research, and near- and longer-term projections of research leadership. U.S. leadership in mechanical engineering basic research overall will continue to be strong. Contributions of U.S. mechanical engineers to journal articles will increase, but so will the contributions from other growing economies such as China and India. At the same time, the supply of U.S. mechanical engineers is in jeopardy, because of declines in the number of U.S. citizens obtaining advanced degrees and uncertain prospects for continuing to attract foreign students. U.S. funding of mechanical engineering basic research and infrastructure will remain level, with strong leadership in emerging areas.




The Future of U.S. Chemistry Research


Book Description

Chemistry plays a key role in conquering diseases, solving energy problems, addressing environmental problems, providing the discoveries that lead to new industries, and developing new materials and technologies for national defense and homeland security. However, the field is currently facing a crucial time of change and is struggling to position itself to meet the needs of the future as it expands beyond its traditional core toward areas related to biology, materials science, and nanotechnology. At the request of the National Science Foundation and the U.S. Department of Energy, the National Research Council conducted an in-depth benchmarking analysis to gauge the current standing of the U.S. chemistry field in the world. The Future of U.S. Chemistry Research: Benchmarks and Challenges highlights the main findings of the benchmarking exercise.







Rising Above the Gathering Storm


Book Description

In a world where advanced knowledge is widespread and low-cost labor is readily available, U.S. advantages in the marketplace and in science and technology have begun to erode. A comprehensive and coordinated federal effort is urgently needed to bolster U.S. competitiveness and pre-eminence in these areas. This congressionally requested report by a pre-eminent committee makes four recommendations along with 20 implementation actions that federal policy-makers should take to create high-quality jobs and focus new science and technology efforts on meeting the nation's needs, especially in the area of clean, affordable energy: 1) Increase America's talent pool by vastly improving K-12 mathematics and science education; 2) Sustain and strengthen the nation's commitment to long-term basic research; 3) Develop, recruit, and retain top students, scientists, and engineers from both the U.S. and abroad; and 4) Ensure that the United States is the premier place in the world for innovation. Some actions will involve changing existing laws, while others will require financial support that would come from reallocating existing budgets or increasing them. Rising Above the Gathering Storm will be of great interest to federal and state government agencies, educators and schools, public decision makers, research sponsors, regulatory analysts, and scholars.




A Strategy for Assessing Science


Book Description

A Strategy for Assessing Science offers strategic advice on the perennial issue of assessing rates of progress in different scientific fields. It considers available knowledge about how science makes progress and examines a range of decision-making strategies for addressing key science policy concerns. These include avoiding undue conservatism that may arise from the influence of established disciplines; achieving rational, high-quality, accountable, and transparent decision processes; and establishing an appropriate balance of influence between scientific communities and agency science managers. A Strategy for Assessing Science identifies principles for setting priorities and specific recommendations for the context of behavioral and social research on aging.




The National Science Foundation's Materials Research Science and Engineering Centers Program


Book Description

The Materials Research Science and Engineering Centers (MRSEC) Impact Assessment Committee was convened by the National Research Council in response to an informal request from the National Science Foundation. Charged to examine the impact of the MRSEC program and to provide guidance for the future, the committee included experts from across materials research as well as several from outside the field. The committee developed a general methodology to examine the MRSEC centers and after extensive research and analysis, came to the following conclusions. MRSEC center awards continue to be in great demand. The intense competition within the community for them indicates a strong perceived value. Using more quantitative measures, the committee examined the performance and impact of MRSEC activities over the past decade in the areas of research, facilities, education and outreach, and industrial collaboration and technology transfer. The MRSEC program has had important impacts of the same high standard of quality as those of other multi-investigator or individual-investigator programs. Although the committee was largely unable to attribute observed impacts uniquely to the MRSEC program, MRSECs generally mobilize efforts that would not have occurred otherwise. Because of an observed decline in the effectiveness of the centers, the committee recommended a restructuring the MRSEC program to allow more efficient use and leveraging of resources. The new program should fully invest in centers of excellence as well as in stand-alone teams of researchers to allow tighter focus on key strengths of the program. In its report, the committee outlines one potential vision for how this might be accomplished in a revenue-neutral fashion.