Exploiting Wastes in Concrete


Book Description

Concrete will be the key material for mankind to create the built environment of the next millennium. The requirements of this infrastructure will be both demanding, in terms of technical performance and economy, and yet be greatly varied, from architectural masterpieces to the simplest of utilities.Exploiting wastes in concrete forms the Proceedings of the one day International Seminar held during the Congress, Creating with concrete, 6-10 September 1999, organised by the concrete technology unit, University of Dundee.




Recycled Aggregate in Concrete


Book Description

Concrete is the most used man-made material in the world since its invention. The widespread use of this material has led to continuous developments such as ultra-high strength concrete and self-compacting concrete. Recycled Aggregate in Concrete: Use of Industrial, Construction and Demolition Waste focuses on the recent development which the use of various types of recycled waste materials as aggregate in the production of various types of concrete. By drawing together information and data from various fields and sources, Recycled Aggregate in Concrete: Use of Industrial, Construction and Demolition Waste provides full coverage of this subject. Divided into two parts, a compilation of varied literature data related to the use of various types of industrial waste as aggregates in concrete is followed by a discussion of the use of construction and demolition waste as aggregate in concrete. The properties of the aggregates and their effect on various concrete properties are presented, and the quantitative procedure to estimate the properties of concrete containing construction and demolition waste as aggregates is explained. Current codes and practices developed in various countries to use construction and demolition waste as aggregates in concrete and issues related to the sustainability of cement and concrete production are also discussed. The comprehensive information presented in Recycled Aggregate in Concrete: Use of Industrial, Construction and Demolition Waste will be helpful to graduate students, researchers and concrete technologists. The collected data will also be an essential reference for practicing engineers who face problems concerning the use of these materials in concrete production.




InCIEC 2013


Book Description

The special focus of this proceeding is to cover the areas of infrastructure engineering and sustainability management. The state-of-the art information in infrastructure and sustainable issues in engineering covers earthquake, bioremediation, synergistic management, timber engineering, flood management and intelligent transport systems. It provides precise information with regards to innovative research development in construction materials and structures in addition to a compilation of interdisciplinary finding combining nano-materials and engineering.




Recycling of Demolished Concrete and Masonry


Book Description

This new RILEM report contains state-of-the-art reviews on three topics: recycling of demolished concrete, recycling of masonry rubble and localized cutting by blasting of concrete. It has been compiled by an international RILEM Committee and draws on research and practical experience worldwide.




Recycled Aggregate Concrete Structures


Book Description

This book describes how, given the global challenge of a shortage of natural resources in the 21st century, the recycling of waste concrete is one of the most important means of implementing sustainable construction development strategies. Firstly, the book presents key findings on the micro- and meso-structure of recycled aggregate concrete (RAC), while the second part focuses on the mechanical properties of RAC: the strength, elastic modulus, Poisson’s ratio, stress-strain curve, etc. The third part of the book explores research on the durability of RAC: carbonization, chloride penetration, shrinkage and creep. It then presents key information on the mechanical behavior and seismic performance of RAC elements and structures: beams, columns, slabs, beam-column joints, and frames. Lastly, the book puts forward design guidelines for recycled aggregate concrete structures. Taken as a whole, the research results – based on a series of investigations the author has condu cted on the mechanical properties, durability and structural performance of recycled aggregate concrete (RAC) over the past 10 years – demonstrate that, with proper design and construction, it is safe and feasible to utilize RAC structures in civil engineering applications. The book will greatly benefit researchers, postgraduates, and engineers in civil engineering with an interest in this field.




Waste and Byproducts in Cement-Based Materials


Book Description

Waste and By-Products in Cement-Based Materials: Innovative Sustainable Materials for a Circular Economy covers various recycled materials, by-products and wastes that are suitable for the manufacture of materials within the spectrum of so-called cement-based materials (CBM). Sections cover wastes for replacement of aggregates in CBM, focus on the application of wastes for the replacement of clinker and mineral additions in the manufacture of binders, discuss the optimization process surrounding the manufacture of recycled concrete and mortars, multi-recycling, advanced radiological studies, optimization of self-compacting concrete, rheology properties, corrosion prevention, and more. Final sections includes a review of real-scale applications that have been made in recent years of cement-based materials in roads, railway superstructures, buildings and civil works, among others, as well as a proposal of new regulations to promote the use of waste in the manufacture of CBM. - Favors the institution of the circular economy in the construction industry by eliminating the barriers that currently prevent industrial waste from being valorized by its inclusion in CBM design - Features an in-depth exploration of the strengths and weaknesses of new raw materials and their application to CBMs - Features real-scale applications that have been made in recent years of cement-based materials in roads, railway superstructures, buildings and civil works, among others - Presents current, state-of-the-art, and future-prospects for the use of industrial waste in CBMs




Waste Materials Used in Concrete Manufacturing


Book Description

The environmental aspects involved in the production and use of cement, concrete and other building materials are of growing importance. CO2 emissions are 0.8-1.3 ton/ton of cement production in dry process. SO2 emission is also very high, but is dependent upon the type of fuel used. Energy consumption is also very high at 100-150 KWT/ton of cement produced. It is costly to erect new cement plants. Substitution of waste materials will conserve dwindling resources, and will avoid the environmental and ecological damages caused by quarrying and exploitation of the raw materials for making cement. To some extent, it will help to solve the problem otherwise encountered in disposing of the wastes. Partial replacement of clinker or portland cement by slag, fly ash, silica fume and natural rock minerals illustrates these aspects. Partial replacement by natural materials that require little or no processing, such as pozzolans, calcined clays, etc., saves energy and decreases emission of gases. The output of waste materials suitable as cement replacement (slags, fly ashes, silica fumes, rice husk ash, etc.) is more than double that of cement production.These waste materials can partly be used, or processed, to produce materials suitable as aggregates or fillers in concrete. These can also be used as clinker raw materials, or processed into cementing systems. New grinding and mixing technology will make the use of these secondary materials simpler. Developments in chemical admixtures: superplasticizers, air entraining agents, etc., help in controlling production techniques and, in achieving the desired properties in concrete.Use of waste products is not only a partial solution to environmental and ecological problems; it significantly improves the microstructure, and consequently the durability properties of concrete, which are difficult to achieve by the use of pure portland cement. The aim is not only to make the cements and concrete less expensive, but to provide a blend of tailored properties of waste materials and portland cements suitable for specified purpose. This requires a better understanding of chemistry, and materials science.There is an increasing demand for better understanding of material properties, as well as better control of the microstructure developing in the construction material, to increase durability. The combination of different binders and modifiers to produce cheaper and more durable building materials will solve to some extent the ecological and environmental problems.




Making the Modern World


Book Description

How much further should the affluent world push its material consumption? Does relative dematerialization lead to absolute decline in demand for materials? These and many other questions are discussed and answered in Making the Modern World: Materials and Dematerialization. Over the course of time, the modern world has become dependent on unprecedented flows of materials. Now even the most efficient production processes and the highest practical rates of recycling may not be enough to result in dematerialization rates that would be high enough to negate the rising demand for materials generated by continuing population growth and rising standards of living. This book explores the costs of this dependence and the potential for substantial dematerialization of modern economies. Making the Modern World: Materials and Dematerialization considers the principal materials used throughout history, from wood and stone, through to metals, alloys, plastics and silicon, describing their extraction and production as well as their dominant applications. The evolving productivities of material extraction, processing, synthesis, finishing and distribution, and the energy costs and environmental impact of rising material consumption are examined in detail. The book concludes with an outlook for the future, discussing the prospects for dematerialization and potential constrains on materials. This interdisciplinary text provides useful perspectives for readers with backgrounds including resource economics, environmental studies, energy analysis, mineral geology, industrial organization, manufacturing and material science.




Advances in Construction and Demolition Waste Recycling


Book Description

Advances in Construction and Demolition Waste Recycling: Management, Processing and Environmental Assessment is divided over three parts. Part One focuses on the management of construction and demolition waste, including estimation of quantities and the use of BIM and GIS tools. Part Two reviews the processing of recycled aggregates, along with the performance of concrete mixtures using different types of recycled aggregates. Part Three looks at the environmental assessment of non-hazardous waste. This book will be a standard reference for civil engineers, structural engineers, architects and academic researchers working in the field of construction and demolition waste. - Summarizes key recent research in recycling and reusing concrete and demolition waste to reduce environmental impacts - Considers techniques for managing construction and demolition waste, including waste management plans, ways of estimating levels of waste, and the types and optimal location of waste recycling plants - Reviews key steps in handling construction and demolition waste




Handbook of Recycled Concrete and Demolition Waste


Book Description

The civil engineering sector accounts for a significant percentage of global material and energy consumption and is a major contributor of waste material. The ability to recycle and reuse concrete and demolition waste is critical to reducing environmental impacts in meeting national, regional and global environmental targets. Handbook of recycled concrete and demolition waste summarises key recent research in achieving these goals.Part one considers techniques for managing construction and demolition waste, including waste management plans, ways of estimating levels of waste, the types and optimal location of waste recycling plants and the economics of managing construction and demolition waste. Part two reviews key steps in handling construction and demolition waste. It begins with a comparison between conventional demolition and construction techniques before going on to discuss the preparation, refinement and quality control of concrete aggregates produced from waste. It concludes by assessing the mechanical properties, strength and durability of concrete made using recycled aggregates. Part three includes examples of the use of recycled aggregates in applications such as roads, pavements, high-performance concrete and alkali-activated or geopolymer cements. Finally, the book discusses environmental and safety issues such as the removal of gypsum, asbestos and alkali-silica reaction (ASR) concrete, as well as life-cycle analysis of concrete with recycled aggregates.Handbook of recycled concrete and demolition waste is a standard reference for all those involved in the civil engineering sector, as well as academic researchers in the field. - Summarises key recent research in recycling and reusing concrete and demolition waste to reduce environmental impacts and meet national, regional and global environmental targets - Considers techniques for managing construction and demolition waste, including waste management plans, ways of estimating levels of waste, the types and optimal location of waste recycling plants - Reviews key steps in handling construction and demolition waste