Exploring Mathematics


Book Description

Exploring Mathematics: Investigations with Functions is intended for a one- or two-term course in mathematics for college students majoring in the social sciences, English, history, music, art, education, or any of the other majors within liberal arts. The mathematics course of this scope, with an algebra prerequsite, is a popular selection for liberal arts students. This 9-chapter textbook offers modern applications of mathematics in the liberal arts as well as aesthetic features of this rich facet of history and ongoing advancement of human society. With a central theme around the use of the concept of functions, and the inclusion of unique topics and chapters, Exploring Mathematics enables students to explore the next level of mathematics. It attempts to answer the questions, "How does mathematics help us to better our society and understand the world around us?" and "What are some of the unifying ideas of mathematics?" The central theme helps to impress upon the student the feeling that mathematics is more than a disconnected potpourri of rules and tricks. Although it would be inappropriate to force a functional connection in every single section, the theme is used whenever possible to provide conceptual bridges between chapters. Developing the concept of a function augments the presentation of many topics in every chapter. The Text's Objectives: The author chose the topics based on meeting the specific NCTM curriculum standards to: 1. Strengthen estimation and computational skills. 2. Utilize algebraic concepts. 3. Emphasize problem-solving and reasoning. 4. Emphasize pattern and relationship recognition. 5. Highlight importance of units in measurement. 6. Highlight importance of the notion of a mathematical function. 7. Display mathematical connections to other disciplines.




Precalculus


Book Description

"Precalculus is intended for college-level precalculus students. Since precalculus courses vary from one institution to the next, we have attempted to meet the needs of as broad an audience as possible, including all of the content that might be covered in any particular course. The result is a comprehensive book that covers more ground than an instructor could likely cover in a typical one- or two-semester course; but instructors should find, almost without fail, that the topics they wish to include in their syllabus are covered in the text. Many chapters of OpenStax College Precalculus are suitable for other freshman and sophomore math courses such as College Algebra and Trigonometry; however, instructors of those courses might need to supplement or adjust the material. OpenStax will also be releasing College Algebra and Algebra and trigonometry titles tailored to the particular scope, sequence, and pedagogy of those courses."--Preface.




Functions in Mathematics


Book Description

When discussing the mathematical knowledge of elementary school teachers, the National Council of Teachers of Mathematics concludes that teachers must have a deep understanding of mathematics and be able to easily draw on that knowledge with flexibility in their teaching tasks. Mathematics teachers must understand the big ideas of mathematics and be able to represent mathematics as a coherent and connected endeavor. This inquiry and exploration-based workbook has been designed as a tool for pre-service and in-service mathematics teachers to use as a guidebook for "doing mathematics" and exploring mathematics topics in depth. The lessons chosen for this text serve as a function-based approach that connects important topics in the secondary mathematics curriculum and act as a bridge to university-level mathematics. Whether used as a course text or for individual professional development purposes, this book should be approached from the standpoint of discovery and reflection about the significance of the selected topics. It is the authors' hope that the explorations contained within serve as vehicles for classroom discussion and presentation of mathematics topics, or as starting points for further investigation. Efraim P. Armendariz is a professor of mathematics at the University of Texas at Austin. His mathematical interests include noncommutative ring theory, development of educational programs addressing accessibility issues, and development of secondary mathematics teachers. He received a Ph.D. in Mathematics from the University of Nebraska-Lincoln in 1966. Mark L. Daniels is a clinical associate professor of mathematics and UTeach Natural Sciences at the University of Texas at Austin. His research interests involve the preparation of pre-service teachers and the incorporation of instructional methodology in mathematics courses taken by students seeking certification.




Understanding Emotions in Mathematical Thinking and Learning


Book Description

Emotions play a critical role in mathematical cognition and learning. Understanding Emotions in Mathematical Thinking and Learning offers a multidisciplinary approach to the role of emotions in numerical cognition, mathematics education, learning sciences, and affective sciences. It addresses ways in which emotions relate to cognitive processes involved in learning and doing mathematics, including processing of numerical and physical magnitudes (e.g. time and space), performance in arithmetic and algebra, problem solving and reasoning attitudes, learning technologies, and mathematics achievement. Additionally, it covers social and affective issues such as identity and attitudes toward mathematics. - Covers methodologies in studying emotion in mathematical knowledge - Reflects the diverse and innovative nature of the methodological approaches and theoretical frameworks proposed by current investigations of emotions and mathematical cognition - Includes perspectives from cognitive experimental psychology, neuroscience, and from sociocultural, semiotic, and discursive approaches - Explores the role of anxiety in mathematical learning - Synthesizes unifies the work of multiple sub-disciplines in one place




25 Real Life Math Investigations


Book Description

Investigations on topics such as the dangers of short term loans, interest, and other topics of financial literacy. Explore the math behind current topics such as ethanol and hybrid cars. Learn how math mistakes in the media have had significant consequences. These and other fascinating math investigations show the ability of mathematics to cut through deception and flawed thinking.




Mathematics and Computation


Book Description

From the winner of the Turing Award and the Abel Prize, an introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography




Emp 96 Pes G7


Book Description




Math and Nonfiction


Book Description

"Provides lessons that link mathematics with nonfiction. Topics include collecting and analyzing data; using proportional reasoning; and exploring linear and exponential growth, probability, and relationships between two- and three-dimensional objects, pi, and more. Each lesson includes an overview of the nonfiction title, a discussion of the lesson's mathematical focus, a description of the activity, and samples of student work"--Provided by publisher.




Mathematical Mindsets


Book Description

Banish math anxiety and give students of all ages a clear roadmap to success Mathematical Mindsets provides practical strategies and activities to help teachers and parents show all children, even those who are convinced that they are bad at math, that they can enjoy and succeed in math. Jo Boaler—Stanford researcher, professor of math education, and expert on math learning—has studied why students don't like math and often fail in math classes. She's followed thousands of students through middle and high schools to study how they learn and to find the most effective ways to unleash the math potential in all students. There is a clear gap between what research has shown to work in teaching math and what happens in schools and at home. This book bridges that gap by turning research findings into practical activities and advice. Boaler translates Carol Dweck's concept of 'mindset' into math teaching and parenting strategies, showing how students can go from self-doubt to strong self-confidence, which is so important to math learning. Boaler reveals the steps that must be taken by schools and parents to improve math education for all. Mathematical Mindsets: Explains how the brain processes mathematics learning Reveals how to turn mistakes and struggles into valuable learning experiences Provides examples of rich mathematical activities to replace rote learning Explains ways to give students a positive math mindset Gives examples of how assessment and grading policies need to change to support real understanding Scores of students hate and fear math, so they end up leaving school without an understanding of basic mathematical concepts. Their evasion and departure hinders math-related pathways and STEM career opportunities. Research has shown very clear methods to change this phenomena, but the information has been confined to research journals—until now. Mathematical Mindsets provides a proven, practical roadmap to mathematics success for any student at any age.




The Mathematical Investigations of Dr. O and Arya


Book Description

"A playful approach to some core ideas of mathematics, this book will help lay the foundation for understanding algebra and probability. Dr. O and his young associate Arya explore and discover ideas in ciphers, triangular numbers, primes and composites, probability, and a variety of fascinating number patterns. For a parent and curious child, or for a curious child alone, these mathematical investigations will invite re-reading and further exploration."--Back cover.