Exploring Geometry


Book Description

Exploring Geometry, Second Edition promotes student engagement with the beautiful ideas of geometry. Every major concept is introduced in its historical context and connects the idea with real-life. A system of experimentation followed by rigorous explanation and proof is central. Exploratory projects play an integral role in this text. Students develop a better sense of how to prove a result and visualize connections between statements, making these connections real. They develop the intuition needed to conjecture a theorem and devise a proof of what they have observed. Features: Second edition of a successful textbook for the first undergraduate course Every major concept is introduced in its historical context and connects the idea with real life Focuses on experimentation Projects help enhance student learning All major software programs can be used; free software from author




Exploring Analytic Geometry with Mathematica


Book Description

The study of two-dimensional analytic geometry has gone in and out of fashion several times over the past century, however this classic field of mathematics has once again become popular due to the growing power of personal computers and the availability of powerful mathematical software systems, such as Mathematica, that can provide an interactive environment for studying the field. By combining the power of Mathematica with an analytic geometry software system called Descarta2D, the author has succeeded in meshing an ancient field of study with modern computational tools, the result being a simple, yet powerful, approach to studying analytic geometry. Students, engineers and mathematicians alike who are interested in analytic geometry can use this book and software for the study, research or just plain enjoyment of analytic geometry. Mathematica provides an attractive environment for studying analytic geometry. Mathematica supports both numeric and symbolic computations meaning that geometry problems can be solved for special cases using numbers, as well as general cases producing formulas. Mathematica also has good facilities for producing graphical plots which are useful for visualizing the graphs of two-dimensional geometry. * A classic study in analytic geometry, complete with in-line Mathematica dialogs illustrating every concept as it is introduced * Excellent theoretical presentation *Fully explained examples of all key concepts * Interactive Mathematica notebooks for the entire book * Provides a complete computer-based environment for study of analytic geometry * All chapters and reference material are provided on CD-ROM in addition to being printedin the book * Complete software system: Descarta2D * A software system, including source code, for the underlying computer implementation, called Descarta2D is provided * Part VII of the book is a listing of the (30) Mathematica files supporting Descarta2D; the source code is also supplied on CD-ROM * Explorations * More than 120 challenging problems in analytic geometry are posed; Complete solutions are provided both as interactive Mathematica notebooks on CD-ROM and as printed material in the book * Mathematica and Descarta2D Hints expand the reader's knowledge and understanding of Descarta2D and Mathematica * Sortware developed with Mathematica 3.0 and is compatible with Mathematica 4.0 * Detailed reference manual * Complete documentation for Descarta2D * Fully integrated into the Mathematica Help Browser




Making Geometry


Book Description

Professional guide to making three-dimensional models of all the Platonic and Archimedian solids in step-by-step instructions.




Turtle Geometry


Book Description

Turtle Geometry presents an innovative program of mathematical discovery that demonstrates how the effective use of personal computers can profoundly change the nature of a student's contact with mathematics. Using this book and a few simple computer programs, students can explore the properties of space by following an imaginary turtle across the screen. The concept of turtle geometry grew out of the Logo Group at MIT. Directed by Seymour Papert, author of Mindstorms, this group has done extensive work with preschool children, high school students and university undergraduates.







Improving Instruction in Geometry and Measurement


Book Description

Helping students develop an understanding of important mathematical ideas is a persistent challenge for teachers. In this book, one of a three-volume set, well-known mathematics educators Margaret Smith, Edward A. Silver, and Mary Kay Stein provide teachers of mathematics the support they need to improve their instruction. They focus on ways to engage upper elementary, middle school, and high school students in thinking, reasoning, and problem solving to build their mathematics understanding and proficiency. The content focus of Volume One is rational numbers and proportionality. Using materials that were developed under the NSF-funded COMET (Cases of Mathematics to Enhance Teaching) program, each volume in the set features cases from urban, middle school classrooms with ethnically, racially, and linguistically diverse student populations. Each case illustrates an instructional episode in the classroom of a teacher who is implementing standards-based instruction, the teachers' perspective, including their thoughts and actions as they interact with students and with key aspects of mathematical content, cognitively challenging mathematics activities that are built around samples of authentic classroom practice., and facilitation chapters to help professional developers "teach" the cases, including specific guidelines for facilitating discussions and suggestions for connecting the ideas presented in the cases to a teacher's own practice. As a complete set, this resource provides a basis on which to build a comprehensive professional development program to improve mathematics instruction and student learning.




Exploring Curvature


Book Description

This introductory book is organized around a collection of simple experiments which the reader can perform at home or in a classroom setting. Methods for physically exploring the intrinsic geometry of commonplace curved objects (such as bowls, balls and watermelons) are described. The concepts of Gaussian curvature, parallel transport, and geodesics are treated.




Young Children Learn Measurement and Geometry


Book Description

Improving the quality of education is an important ambition of educational policy. The TAL project aims to contribute to this. It is a project initiated by the Dutch Ministry of Education, Culture and Science, and carried out by the Freudenthal Institute (FI) of Utrecht University and the Dutch National Institute for Curriculum Development (SLO), and partly conducted in cooperation with the Rotterdam Center for Educational Services (CED). The quality of education can be improved in many ways.




Exploring Advanced Euclidean Geometry with GeoGebra


Book Description

This book provides an inquiry-based introduction to advanced Euclidean geometry. It utilizes dynamic geometry software, specifically GeoGebra, to explore the statements and proofs of many of the most interesting theorems in the subject. Topics covered include triangle centers, inscribed, circumscribed, and escribed circles, medial and orthic triangles, the nine-point circle, duality, and the theorems of Ceva and Menelaus, as well as numerous applications of those theorems. The final chapter explores constructions in the Poincare disk model for hyperbolic geometry. The book can be used either as a computer laboratory manual to supplement an undergraduate course in geometry or as a stand-alone introduction to advanced topics in Euclidean geometry. The text consists almost entirely of exercises (with hints) that guide students as they discover the geometric relationships for themselves. First the ideas are explored at the computer and then those ideas are assembled into a proof of the result under investigation. The goals are for the reader to experience the joy of discovering geometric relationships, to develop a deeper understanding of geometry, and to encourage an appreciation for the beauty of Euclidean geometry.




A Course in the Geometry of N Dimensions


Book Description

This text for undergraduate students provides a foundation for resolving proofs dependent on n-dimensional systems. The two-part treatment begins with simple figures in n dimensions and advances to examinations of the contents of hyperspheres, hyperellipsoids, hyperprisms, etc. The second part explores the mean in rectangular variation, the correlation coefficient in bivariate normal variation, Wishart's distribution, more. 1961 edition.