Exploring Quantum Physics through Hands-on Projects


Book Description

Build an intuitive understanding of the principles behind quantum mechanics through practical construction and replication of original experiments With easy-to-acquire, low-cost materials and basic knowledge of algebra and trigonometry, Exploring Quantum Physics through Hands-on Projects takes readers step by step through the process of re-creating scientific experiments that played an essential role in the creation and development of quantum mechanics. Presented in near chronological order—from discoveries of the early twentieth century to new material on entanglement—this book includes question- and experiment-filled chapters on: Light as a Wave Light as Particles Atoms and Radioactivity The Principle of Quantum Physics Wave/Particle Duality The Uncertainty Principle Schrödinger (and his Zombie Cat) Entanglement From simple measurements of Planck's constant to testing violations of Bell's inequalities using entangled photons, Exploring Quantum Physics through Hands-on Projects not only immerses readers in the process of quantum mechanics, it provides insight into the history of the field—how the theories and discoveries apply to our world not only today, but also tomorrow. By immersing readers in groundbreaking experiments that can be performed at home, school, or in the lab, this first-ever, hands-on book successfully demystifies the world of quantum physics for all who seek to explore it—from science enthusiasts and undergrad physics students to practicing physicists and engineers.




Quantum Mechanics


Book Description

This textbook presents quantum mechanics at the junior/senior undergraduate level. It is unique in that it describes not only quantum theory, but also presents five laboratories that explore truly modern aspects of quantum mechanics. These laboratories include "proving" that light contains photons, single-photon interference, and tests of local realism. The text begins by presenting the classical theory of polarization, moving on to describe the quantum theory of polarization. Analogies between the two theories minimize conceptual difficulties that students typically have when first presented with quantum mechanics. Furthermore, because the laboratories involve studying photons, using photon polarization as a prototypical quantum system allows the laboratory work to be closely integrated with the coursework. Polarization represents a two-dimensional quantum system, so the introduction to quantum mechanics uses two-dimensional state vectors and operators. This allows students to become comfortable with the mathematics of a relatively simple system, before moving on to more complicated systems. After describing polarization, the text goes on to describe spin systems, time evolution, continuous variable systems (particle in a box, harmonic oscillator, hydrogen atom, etc.), and perturbation theory. The book also includes chapters which describe material that is frequently absent from undergraduate texts: quantum measurement, entanglement, quantum field theory and quantum information. This material is connected not only to the laboratories described in the text, but also to other recent experiments. Other subjects covered that do not often make their way into undergraduate texts are coherence, complementarity, mixed states, the density operator and coherent states. Supplementary material includes further details about implementing the laboratories, including parts lists and software for running the experiments. Computer simulations of some of the experiments are available as well. A solutions manual for end-of-chapter problems is available to instructors.




Exploring the Quantum


Book Description

The counter-intuitive aspects of quantum physics have been long illustrated by thought experiments, from Einstein's photon box to Schrödinger's cat. These experiments have now become real, with single particles - electrons, atoms, or photons - directly unveiling the strange features of the quantum. State superpositions, entanglement and complementarity define a novel quantum logic which can be harnessed for information processing, raising great hopes for applications. This book describes a class of such thought experiments made real. Juggling with atoms and photons confined in cavities, ions or cold atoms in traps, is here an incentive to shed a new light on the basic concepts of quantum physics. Measurement processes and decoherence at the quantum-classical boundary are highlighted. This volume, which combines theory and experiments, will be of interest to students in quantum physics, teachers seeking illustrations for their lectures and new problem sets, researchers in quantum optics and quantum information.




Integrating Literature in the Disciplines


Book Description

The Second Edition of this practical and comprehensive resource offers a multitude of ways to incorporate literature into teaching and learning across a range of disciplines. Future and practicing teachers, librarians, instructional coaches, and school leaders can implement the ideas within this text to improve the literacy skills and knowledge of students, while also addressing standards and curricular goals of various content areas. The new edition recognizes a paradigm shift from content areas to disciplines, reflecting the specific ways reading and writing are used in different fields of study. Updated with current research and practices, the volume recommends and evaluates books in different genres and categories, with chapters on informational books; fiction; biography and memoir; poetry; and hands-on and how-to books. For every category, Kane provides a rationale, instructional strategies, and author studies, as well as lists and descriptions of books related to curricular areas. With a wealth of activities and new BookTalks, this Second Edition is greatly revised and features expanded attention to technology, digital learning, diversity, and culture. Using this text will create opportunities for deep discussions and will stimulate students’ interest and motivation to read and learn. Integrating Literature in the Disciplines helps educators identify books that fit with any subject to enhance the creative and affective dimensions of school life; encourages interdisciplinary connections; and increases the depth and relevance of lessons. It is ideal for professional development and serves as a tool for Readers’ Advisory to match books with readers throughout the school day and beyond.




Foundations of Quantum Mechanics


Book Description

Authored by an acclaimed teacher of quantum physics and philosophy, this textbook pays special attention to the aspects that many courses sweep under the carpet. Traditional courses in quantum mechanics teach students how to use the quantum formalism to make calculations. But even the best students - indeed, especially the best students - emerge rather confused about what, exactly, the theory says is going on, physically, in microscopic systems. This supplementary textbook is designed to help such students understand that they are not alone in their confusions (luminaries such as Albert Einstein, Erwin Schroedinger, and John Stewart Bell having shared them), to sharpen their understanding of the most important difficulties associated with interpreting quantum theory in a realistic manner, and to introduce them to the most promising attempts to formulate the theory in a way that is physically clear and coherent. The text is accessible to students with at least one semester of prior exposure to quantum (or "modern") physics and includes over a hundred engaging end-of-chapter "Projects" that make the book suitable for either a traditional classroom or for self-study.




Design and Development of Medical Electronic Instrumentation


Book Description

Design and Development of Medical Electronic Instrumentation fills a gap in the existing medical electronic devices literature by providing background and examples of how medical instrumentation is actually designed and tested. The book includes practical examples and projects, including working schematics, ranging in difficulty from simple biopotential amplifiers to computer-controlled defibrillators. Covering every stage of the development process, the book provides complete coverage of the practical aspects of amplifying, processing, simulating and evoking biopotentials. In addition, two chapters address the issue of safety in the development of electronic medical devices, and providing valuable insider advice.




Exploring Ultraviolet Photography


Book Description

Explores how to capture ultraviolet light in digital photography, covering such topics as lens and filter selection, focus and exposure techniques, and post-production techniques designed to enhance ultraviolet photographs.




Make: Technology on Your Time Volume 31


Book Description

Why are so many kids (and adults) like you bored by science? Simple: you’ve had no real contact with it. You might read about incredibly expensive scientific projects, but your hands-on experience is probably limited to the same tired experiments—like baking soda and vinegar "volcanoes." Not any longer. Make Magazine’s "Punk Science" issue (volume 31) shows you how you can become a real, cutting-edge amateur scientist. Find out how high school and college students can get an introduction to modern biology research through affordable biotech labs provided by Otyp, a small Michigan-based biotechnology company. And learn how a cooperative network of schools and research groups, called PEER, enables students to learn science by working on real projects with people in the field—including the DECA (Distributed Electronic Cosmic-Ray) Observatory that uses Android phones to generate a real-time cosmic-ray flux map of a large area. This issue also shows you how to create these fascinating projects on your own: RoboRoach—Surgically modify a cockroach with a wireless electronic circuit so that you can control it to turn left or right by micro-stimulating its antenna nerves. Lord Kelvin’s Thunderstorm—a little-known, classic science experiment that generates high-voltage "lightning" sparks by dripping water through metal rings. An automatic Ball/Toy Launcher for Dogs that will keep your pet entertained and exercised while you’re away. A True Mirror, which shows what you look like to other people. Pick up a copy of Make today and get involved with real science.




Spooky Action at a Distance


Book Description

Long-listed for the 2016 PEN/E. O. Wilson Literary Science Writing Award Delightfully readable, Spooky Action at a Distance is a mind-bending voyage to the frontiers of modern physics that will change the way we think about reality. What is space? It isn't a question that most of us normally ask. Space is the venue of physics; it's where things exist, where they move and take shape. Yet over the past few decades, physicists have discovered a phenomenon that operates outside the confines of space and time: nonlocality--the ability of two particles to act in harmony no matter how far apart they may be. It appears to be almost magical. Einstein grappled with this oddity and couldn't come to terms with it, describing it as "spooky action at a distance." More recently, the mystery has deepened as other forms of nonlocality have been uncovered. This strange occurrence, which has direct connections to black holes, particle collisions, and even the workings of gravity, holds the potential to undermine our most basic understandings of physical reality. If space isn't what we thought it was, then what is it? In Spooky Action at a Distance, George Musser sets out to answer that question, offering a provocative exploration of nonlocality and a celebration of the scientists who are trying to explain it. Musser guides us on an epic journey into the lives of experimental physicists observing particles acting in tandem, astronomers finding galaxies that look statistically identical, and cosmologists hoping to unravel the paradoxes surrounding the big bang. He traces the often contentious debates over nonlocality through major discoveries and disruptions of the twentieth century and shows how scientists faced with the same undisputed experimental evidence develop wildly different explanations for that evidence. Their conclusions challenge our understanding of not only space and time but also the origins of the universe-and they suggest a new grand unified theory of physics. “An important book that provides insight into key new developments in our understanding of the nature of space, time and the universe. It will repay careful study.” —John Gribbin, The Wall Street Journal “An endlessly surprising foray into the current mother of physics' many knotty mysteries, the solving of which may unveil the weirdness of quantum particles, black holes, and the essential unity of nature.” —Kirkus Reviews (starred review)




Single-Photon Imaging


Book Description

The acquisition and interpretation of images is a central capability in almost all scientific and technological domains. In particular, the acquisition of electromagnetic radiation, in the form of visible light, UV, infrared, X-ray, etc. is of enormous practical importance. The ultimate sensitivity in electronic imaging is the detection of individual photons. With this book, the first comprehensive review of all aspects of single-photon electronic imaging has been created. Topics include theoretical basics, semiconductor fabrication, single-photon detection principles, imager design and applications of different spectral domains. Today, the solid-state fabrication capabilities for several types of image sensors has advanced to a point, where uncoooled single-photon electronic imaging will soon become a consumer product. This book is giving a specialist ́s view from different domains to the forthcoming “single-photon imaging” revolution. The various aspects of single-photon imaging are treated by internationally renowned, leading scientists and technologists who have all pioneered their respective fields.