Facilitated Transport Membranes (FTMs) for CO2 Capture: Overview and Future Trends


Book Description

This book highlights the importance of Facilitated Transport Membranes (FTMs) for the application of carbon capture, covering its introduction, gas transport phenomena and models, reaction mechanisms, industrial applications such as bio-gas upgradation, flue gas separation, hydrogen gas and natural gas purification, fabrication methods of both FTMs and their carrier mediums, testing/characterization techniques, techno-analysis with up-to-date trends and the future outlooks. Climate change and environmental impacts are resulted due to greenhouse gases, particularly CO2. The industrial revolution is currently causing the augmented emission of greenhouse gases. Therefore, various technologies are being looked at to overcome these problems. In which, membrane technology is key among them and is envisaged for many industrial applications, especially for gas separations and carbon capture. Considering this, FTMs are being actively investigated due to their remarkable gas separation performance. This book describes the working principle of FTMs and includes case studies to explore their impact on different industrial applications. Also, the book highlights how FTMs are reshaping science to capture CO2 for reducing climate and environmental impacts.




Current Trends and Future Developments on (Bio-) Membranes


Book Description

Current Trends and Future Developments on (Bio-) Membranes: Carbon Dioxide Separation/Capture by Using Membranes explores the unique property of membranes to separate gases with different physical and chemical properties. The book covers both polymeric and inorganic materials for CO2 separation and explains their mechanism of action, allowing for the development and most appropriate and efficient processes. It also lists the advantages of using membranes instead of other separation techniques, i.e., their low operating costs and low energy consumption. This book offers a unique opportunity for scientists working in the field of membrane technology for CO2 separation and capture. - Outlines numerous membrane-based technologies for CO2 separation and capture - Lists new, advanced separation techniques and production processes - Includes various applications, modelling, and the economic considerations of each process - Covers advanced techniques for the separation of CO2 in natural gas




Basic Gas Chromatography


Book Description

The New Edition of the Well-Regarded Handbook on Gas Chromatography Since the publication of the highly successful first edition of Basic Gas Chromatography, the practice of chromatography has undergone several notable developments. Basic Gas Chromatography, Second Edition covers the latest in the field, giving readers the most up-to-date guide available, while maintaining the first edition's practical, applied approach to the subject and its accessibility to a wide range of readers. The text provides comprehensive coverage of basic topics in the field, such as stationary phases, packed columns and inlets, capillary columns and inlets, detectors, and qualitative and quantitative analysis. At the same time, the coverage also features key additions and updated topics including: Gas chromatography-mass spectrometry (GC-MS) Sampling methods Multidimensional gas chromatography Fast gas chromatography Gas chromatography analysis of nonvolatile compounds Inverse gas chromatography and pyrolysis gas chromatography Along with these new and updated topics, the references, resources, and Web sites in Basic Gas Chromatography have been revised to reflect the state of the field. Concise and fundamental in its coverage, Basic Gas Chromatography, Second Edition remains the standard handbook for everyone from undergraduates studying analytical chemistry to working industrial chemists.




Advances in Sustainable Polymers


Book Description

This book provides a systematic overview of the processing and applications of sustainable polymers. The volume covers recent advances in biomedical, food packaging, fuel cell, membrane, and other emerging applications. The book begins by addressing different sections of biomedical application including use of carbohydrate-based therapeutics, nanohybrids, nanohydrogels, bioresorbable polymers and their composites, polymer-grafted nanobiomaterials for biomedical devices and implants, nanofibres, and others. The second part of this book discusses various processing and packaging materials for food packaging applications. The last section discusses other emerging applications, including using microbial fuel cells for waste water treatment, microfluidic fuel cells for low power applications, among others. This volume will be relevant to researchers working to improve the properties of bio-based materials for their advanced application and wide commercialization.




Pd-based Membranes


Book Description

Palladium (Pd)-based membranes have received a great deal of attention from both academia and industry thanks to their ability to selectively separate hydrogen from gas streams. The integration of such membranes with appropriate catalysts in membrane reactors allows for hydrogen production with CO2 capture that can be applied in smaller bioenergy or combined heat and power (CHP) plants, as well as in large-scale power plants. Pd-based membranes are therefore regarded as a Key Enabling Technology (KET) to facilitate the transition towards a knowledge-based, low-carbon, and resource-efficient economy. This Special Issue of the journal Membranes on “Pd-based Membranes: Overview and Perspectives” contains nine peer-reviewed articles. Topics include manufacturing techniques, understanding of material phenomena, module and reactor design, novel applications, and demonstration efforts and industrial exploitation.




Liquid Membranes


Book Description

Liquid Membranes: Principles and Applications in Chemical Separations and Wastewater Treatment discusses the principles and applications of the liquid membrane (LM) separation processes in organic and inorganic chemistry, analytical chemistry, biochemistry, biomedical engineering, gas separation, and wastewater treatment. It presents updated, useful, and systematized information on new LM separation technologies, along with new developments in the field. It provides an overview of LMs and LM processes, and it examines the mechanisms and kinetics of carrier-facilitated transport through LMs. It also discusses active transport, driven by oxidation-reduction, catalytic, and bioconversion reactions on the LM interfaces; modifications of supported LMs; bulk aqueous hybrid LM processes with water-soluble carriers; emulsion LMs and their applications; and progress in LM science and engineering. This book will be of value to students and young researchers who are new to separation science and technology, as well as to scientists and engineers involved in the research and development of separation technologies, LM separations, and membrane reactors. - Provides comprehensive knowledge-based information on the principles and applications of a variety of liquid membrane separation processes - Contains a critical analysis of new technologies published in the last 15 years




Piezoelectric Energy Harvesting Systems


Book Description

This book investigates in detail piezoelectric energy harvesting (PEH) technology, assessing its potential us to replace conventional electrochemical batteries with kinetic energy harvesters as sustainable power supplies in wireless sensor network (WSN) devices and mobile electronics, which are originally exposed to ambient vibration. Studies on PEH have attracted engineers and scientists from various disciplines, such as electrical, mechanical, materials, civil and biomedical engineering. Pursuing a holistic approach, the book establishes a fundamental framework for this topic, while emphasizing the importance of integrated analysis and the significant influence of circuit issues in the design and optimization of PEH systems. This approach will help readers from different disciplines recognize the essential aspects of and milestones towards the optimization of PEH systems in practice. The book is intended for undergraduate and graduate students who are interested in energy harvesting technology, researchers investigating kinetic energy harvesting systems, and structure/circuit design engineers working on self-powered WSNs or other energy harvesting applications.




Thermophysical Properties of Chemicals and Hydrocarbons


Book Description

Compiled by an expert in the field, the book provides an engineer with data they can trust. Spanning gases, liquids, and solids, all critical properties (including viscosity, thermal conductivity, and diffusion coefficient) are covered. From C1 to C100 organics and Ac to Zr inorganics, the data in this handbook is a perfect quick reference for field, lab or classroom usage. By collecting a large – but relevant – amount of information in one source, the handbook enables engineers to spend more time developing new designs and processes, and less time collecting vital properties data. This is not a theoretical treatise, but an aid to the practicing engineer in the field, on day-to-day operations and long range projects. - Simplifies research and significantly reduces the amount of time spent collecting properties data - Compiled by an expert in the field, the book provides an engineer with data they can trust in design, research, development and manufacturing - A single, easy reference for critical temperature dependent properties for a wide range of hydrocarbons, including C1 to ClOO organics and Ac to Zr inorganics




Membrane Handbook


Book Description

Membrane processes have wide industrial ap This handbook reviews the published litera plications covering many existing and emerging ture, presents an in-depth description of com uses in the chemical, petrochemical, petroleum, mercialized membrane processes, and gives a state-of-the-art review of new membrane pro environmental, water treatment, pharmaceutic al, medical, food, dairy, beverage, paper, tex cess concepts under development. It is intended tile, and electronic industries. The existing ap to be a single source of underlying principles, membranes, membrane modules, process de plications include: (1) dialysis for the purifica tion of human blood (the artificial kidney), (2) sign, applications, and cost estimates. It is also electrodialysis for the desalination of brackish a first attempt to bridge the gap between the water to produce potable water, (3) reverse theory and practice. osmosis for the desalination of seawater, (4) There are several groups which may benefit ultrafiltration for the concentration of large pro from this handbook. It can be used as educa tein molecules from cheese, casein whey, and tional material for industrial personnel engaged milk, and (5) microfiltration for the sterilization in membrane separations. For scientists and of pharmaceutical and medical products, beer, engineers active in research and development in wine, and soft drinks. Since membrane pro synthetic membranes, it will serve as a single cesses generally have low capital investment, as source of reference for the entire field.




Membrane Fabrication


Book Description

Membranes play a crucial role in ensuring the optimum use and recovery of materials in manufacturing. In the process industries, they are required for efficient production and minimization of environmental impact. They are also essential for the efficient production of clean water, a significant global issue. Membrane Fabrication brings together ex