Families of Varieties of General Type


Book Description

The first complete treatment of the moduli theory of varieties of general type, laying foundations for future research.




Theory of Algebraic Surfaces


Book Description

This is an English translation of the book in Japanese, published as the volume 20 in the series of Seminar Notes from The University of Tokyo that grew out of a course of lectures by Professor Kunihiko Kodaira in 1967. It serves as an almost self-contained introduction to the theory of complex algebraic surfaces, including concise proofs of Gorenstein's theorem for curves on a surface and Noether's formula for the arithmetic genus. It also discusses the behavior of the pluri-canonical maps of surfaces of general type as a practical application of the general theory. The book is aimed at graduate students and also at anyone interested in algebraic surfaces, and readers are expected to have only a basic knowledge of complex manifolds as a prerequisite.




Complex Analysis and Algebraic Geometry


Book Description

The articles in this volume cover some developments in complex analysis and algebraic geometry. The book is divided into three parts. Part I includes topics in the theory of algebraic surfaces and analytic surface. Part II covers topics in moduli and classification problems, as well as structure theory of certain complex manifolds. Part III is devoted to various topics in algebraic geometry analysis and arithmetic. A survey article by Ueno serves as an introduction to the general background of the subject matter of the volume. The volume was written for Kunihiko Kodaira on the occasion of his sixtieth birthday, by his friends and students. Professor Kodaira was one of the world's leading mathematicians in algebraic geometry and complex manifold theory: and the contributions reflect those concerns.




Algebraic Geometry: Salt Lake City 2015


Book Description

This is Part 1 of a two-volume set. Since Oscar Zariski organized a meeting in 1954, there has been a major algebraic geometry meeting every decade: Woods Hole (1964), Arcata (1974), Bowdoin (1985), Santa Cruz (1995), and Seattle (2005). The American Mathematical Society has supported these summer institutes for over 50 years. Their proceedings volumes have been extremely influential, summarizing the state of algebraic geometry at the time and pointing to future developments. The most recent Summer Institute in Algebraic Geometry was held July 2015 at the University of Utah in Salt Lake City, sponsored by the AMS with the collaboration of the Clay Mathematics Institute. This volume includes surveys growing out of plenary lectures and seminar talks during the meeting. Some present a broad overview of their topics, while others develop a distinctive perspective on an emerging topic. Topics span both complex algebraic geometry and arithmetic questions, specifically, analytic techniques, enumerative geometry, moduli theory, derived categories, birational geometry, tropical geometry, Diophantine questions, geometric representation theory, characteristic and -adic tools, etc. The resulting articles will be important references in these areas for years to come.




Classification of Higher Dimensional Algebraic Varieties


Book Description

Higher Dimensional Algebraic Geometry presents recent advances in the classification of complex projective varieties. Recent results in the minimal model program are discussed, and an introduction to the theory of moduli spaces is presented.




Number Theory


Book Description

This book contains papers presented at the Fifth Canadian Number Theory Association (CNTA) conference held at Carleton University Ottawa, Ontario. The invited speakers focused on arithmetic algebraic geometry and elliptic curves, diophantine problems, analytic number theory, and algebraic and computational number theory. The contributed talks represented a wide variety of areas in number theory. David Boyd gave an hour-long talk on Mahler's Measure and Elliptic Curves. This lecture was open to the public and attracted a large audience from outside the conference.




Algebraic Geometry


Book Description

Offers information on various technical tools, from jet schemes and derived categories to algebraic stacks. This book delves into the geometry of various moduli spaces, including those of stable curves, stable maps, coherent sheaves, and abelian varieties. It describes various advances in higher-dimensional bi rational geometry.




The Geometry of Moduli Spaces of Sheaves


Book Description

This edition has been updated to reflect recent advances in the theory of semistable coherent sheaves and their moduli spaces. The authors review changes in the field and point the reader towards further literature. An ideal text for graduate students or mathematicians with a background in algebraic geometry.




Recent Progress in Arithmetic and Algebraic Geometry


Book Description

This proceedings volume resulted from the John H. Barrett Memorial Lecture Series held at the University of Tennessee (Knoxville). The articles reflect recent developments in algebraic geometry. It is suitable for graduate students and researchers interested in algebra and algebraic geometry.




Birational Geometry of Algebraic Varieties


Book Description

One of the major discoveries of the past two decades in algebraic geometry is the realization that the theory of minimal models of surfaces can be generalized to higher dimensional varieties. This generalization, called the minimal model program, or Mori's program, has developed into a powerful tool with applications to diverse questions in algebraic geometry and beyond. This book provides the first comprehensive introduction to the circle of ideas developed around the program, the prerequisites being only a basic knowledge of algebraic geometry. It will be of great interest to graduate students and researchers working in algebraic geometry and related fields.