Fast Algorithms for Structured Matrices


Book Description

One of the best known fast computational algorithms is the fast Fourier transform method. Its efficiency is based mainly on the special structure of the discrete Fourier transform matrix. Recently, many other algorithms of this type were discovered, and the theory of structured matrices emerged. This volume contains 22 survey and research papers devoted to a variety of theoretical and practical aspects of the design of fast algorithms for structured matrices and related issues. Included are several papers containing various affirmative and negative results in this direction. The theory of rational interpolation is one of the excellent sources providing intuition and methods to design fast algorithms. The volume contains several computational and theoretical papers on the topic. There are several papers on new applications of structured matrices, e.g., to the design of fast decoding algorithms, computing state-space realizations, relations to Lie algebras, unconstrained optimization, solving matrix equations, etc. The book is suitable for mathematicians, engineers, and numerical analysts who design, study, and use fast computational algorithms based on the theory of structured matrices.




High Performance Algorithms for Structured Matrix Problems


Book Description

Comprises 10 contributions that summarize the state of the art in the areas of high performance solutions of structured linear systems and structured eigenvalue and singular-value problems. Topics covered range from parallel solvers for sparse or banded linear systems to parallel computation of eigenvalues and singular values of tridiagonal and bidiagonal matrices. Specific paper topics include: the stable parallel solution of general narrow banded linear systems; efficient algorithms for reducing banded matrices to bidiagonal and tridiagonal form; a numerical comparison of look-ahead Levinson and Schur algorithms for non-Hermitian Toeplitz systems; and parallel CG-methods automatically optimized for PC and workstation clusters. Annotation copyrighted by Book News, Inc., Portland, OR




Fast Reliable Algorithms for Matrices with Structure


Book Description

This book is the first to pay special attention to the combined issues of speed and numerical reliability in algorithm development. These two requirements have often been regarded as competitive, so much so that the design of fast and numerically reliable algorithms for large-scale structured systems of linear equations, in many cases, remains a significant open issue. Fast Reliable Algorithms for Matrices with Structure helps bridge this gap by providing the reader with recent contributions written by leading experts in the field. The authors deal with both the theory and the practice of fast numerical algorithms for large-scale structured linear systems. Each chapter covers in detail different aspects of the most recent trends in the theory of fast algorithms, with emphasis on implementation and application issues. Both direct and iterative methods are covered. This book is not merely a collection of articles. The editors have gone to considerable lengths to blend the individual papers into a consistent presentation. Each chapter exposes the reader to some of the most recent research while providing enough background material to put the work into proper context.




Matrix Methods: Theory, Algorithms And Applications - Dedicated To The Memory Of Gene Golub


Book Description

Compared to other books devoted to matrices, this volume is unique in covering the whole of a triptych consisting of algebraic theory, algorithmic problems and numerical applications, all united by the essential use and urge for development of matrix methods. This was the spirit of the 2nd International Conference on Matrix Methods and Operator Equations from 23-27 July 2007 in Moscow that was organized by Dario Bini, Gene Golub, Alexander Guterman, Vadim Olshevsky, Stefano Serra-Capizzano, Gilbert Strang and Eugene Tyrtyshnikov.Matrix methods provide the key to many problems in pure and applied mathematics. However, linear algebra theory, numerical algorithms and matrices in FEM/BEM applications usually live as if in three separate worlds. In this volume, maybe for the first time ever, they are compiled together as one entity as it was at the Moscow meeting, where the algebraic part was impersonated by Hans Schneider, algorithms by Gene Golub, and applications by Guri Marchuk. All topics intervened in plenary sessions are specially categorized into three sections of this volume.The soul of the meeting was Gene Golub, who rendered a charming “Golub's dimension” to the three main axes of the conference topics. This volume is dedicated in gratitude to his memory.




Numerical Methods for Structured Markov Chains


Book Description

Intersecting two large research areas - numerical analysis and applied probability/queuing theory - this book is a self-contained introduction to the numerical solution of structured Markov chains, which have a wide applicability in queuing theory and stochastic modeling and include M/G/1 and GI/M/1-type Markov chain, quasi-birth-death processes, non-skip free queues and tree-like stochastic processes. Written for applied probabilists and numerical analysts, but accessible to engineers and scientists working on telecommunications and evaluation of computer systems performances, it provides a systematic treatment of the theory and algorithms for important families of structured Markov chains and a thorough overview of the current literature. The book, consisting of nine Chapters, is presented in three parts. Part 1 covers a basic description of the fundamental concepts related to Markov chains, a systematic treatment of the structure matrix tools, including finite Toeplitz matrices, displacement operators, FFT, and the infinite block Toeplitz matrices, their relationship with matrix power series and the fundamental problems of solving matrix equations and computing canonical factorizations. Part 2 deals with the description and analysis of structure Markov chains and includes M/G/1, quasi-birth-death processes, non-skip-free queues and tree-like processes. Part 3 covers solution algorithms where new convergence and applicability results are proved. Each chapter ends with bibliographic notes for further reading, and the book ends with an appendix collecting the main general concepts and results used in the book, a list of the main annotations and algorithms used in the book, and an extensive index.




Exploiting Hidden Structure in Matrix Computations: Algorithms and Applications


Book Description

Focusing on special matrices and matrices which are in some sense `near’ to structured matrices, this volume covers a broad range of topics of current interest in numerical linear algebra. Exploitation of these less obvious structural properties can be of great importance in the design of efficient numerical methods, for example algorithms for matrices with low-rank block structure, matrices with decay, and structured tensor computations. Applications range from quantum chemistry to queuing theory. Structured matrices arise frequently in applications. Examples include banded and sparse matrices, Toeplitz-type matrices, and matrices with semi-separable or quasi-separable structure, as well as Hamiltonian and symplectic matrices. The associated literature is enormous, and many efficient algorithms have been developed for solving problems involving such matrices. The text arose from a C.I.M.E. course held in Cetraro (Italy) in June 2015 which aimed to present this fast growing field to young researchers, exploiting the expertise of five leading lecturers with different theoretical and application perspectives.







Laurent Series and their Padé Approximations


Book Description

The Pade approximation problem is, roughly speaking, the local approximation of analytic or meromorphic functions by rational ones. It is known to be important to solve a large scale of problems in numerical analysis, linear system theory, stochastics and other fields. There exists a vast literature on the classical Pade problem. However, these papers mostly treat the problem for functions analytic at 0 or, in a purely algebraic sense, they treat the approximation of formal power series. For certain problems however, the Pade approximation problem for formal Laurent series, rather than for formal power series seems to be a more natural basis. In this monograph, the problem of Laurent-Pade approximation is central. In this problem a ratio of two Laurent polynomials in sought which approximates the two directions of the Laurent series simultaneously. As a side result the two-point Pade approximation problem can be solved. In that case, two series are approximated, one is a power series in z and the other is a power series in z-l. So we can approximate two, not necessarily different functions one at zero and the other at infinity.




Linear Algebra for Signal Processing


Book Description

Signal processing applications have burgeoned in the past decade. During the same time, signal processing techniques have matured rapidly and now include tools from many areas of mathematics, computer science, physics, and engineering. This trend will continue as many new signal processing applications are opening up in consumer products and communications systems. In particular, signal processing has been making increasingly sophisticated use of linear algebra on both theoretical and algorithmic fronts. This volume gives particular emphasis to exposing broader contexts of the signal processing problems so that the impact of algorithms and hardware can be better understood; it brings together the writings of signal processing engineers, computer engineers, and applied linear algebraists in an exchange of problems, theories, and techniques. This volume will be of interest to both applied mathematicians and engineers.




Symplectic Methods for the Symplectic Eigenproblem


Book Description

The solution of eigenvalue problems is an integral part of many scientific computations. For example, the numerical solution of problems in structural dynamics, electrical networks, macro-economics, quantum chemistry, and c- trol theory often requires solving eigenvalue problems. The coefficient matrix of the eigenvalue problem may be small to medium sized and dense, or large and sparse (containing many zeroelements). In the past tremendous advances have been achieved in the solution methods for symmetric eigenvalue pr- lems. The state of the art for nonsymmetric problems is not so advanced; nonsymmetric eigenvalue problems can be hopelessly difficult to solve in some situations due, for example, to poor conditioning. Good numerical algorithms for nonsymmetric eigenvalue problems also tend to be far more complex than their symmetric counterparts. This book deals with methods for solving a special nonsymmetric eig- value problem; the symplectic eigenvalue problem. The symplectic eigenvalue problem is helpful, e.g., in analyzing a number of different questions that arise in linear control theory for discrete-time systems. Certain quadratic eigenvalue problems arising, e.g., in finite element discretization in structural analysis, in acoustic simulation of poro-elastic materials, or in the elastic deformation of anisotropic materials can also lead to symplectic eigenvalue problems. The problem appears in other applications as well.