Crack Paths


Book Description

Many engineering structures and components contain cracks or crack-like flaws and it is widely recognized that crack growth must be considered both in the design and analysis of failures. The complete solution of a crack growth problem therefore includes determination of the crack path. At present the factors controlling the path taken by a propagating crack are not completely understood. In general crack paths are difficult to predict, while in practice their development in structures is often determined by large-scale structural tests. In introductory texts on fracture mechanics it is usually assumed that the crack path is known, either from theoretical considerations, or from the results of laboratory tests.




Fatigue of Structures and Materials


Book Description

Fatigue of structures and materials covers a wide scope of different topics. The purpose of the present book is to explain these topics, to indicate how they can be analyzed, and how this can contribute to the designing of fatigue resistant structures and to prevent structural fatigue problems in service. Chapter 1 gives a general survey of the topic with brief comments on the signi?cance of the aspects involved. This serves as a kind of a program for the following chapters. The central issues in this book are predictions of fatigue properties and designing against fatigue. These objectives cannot be realized without a physical and mechanical understanding of all relevant conditions. In Chapter 2 the book starts with basic concepts of what happens in the material of a structure under cyclic loads. It illustrates the large number of variables which can affect fatigue properties and it provides the essential background knowledge for subsequent chapters. Different subjects are presented in the following main parts: • Basic chapters on fatigue properties and predictions (Chapters 2–8) • Load spectra and fatigue under variable-amplitude loading (Chapters 9–11) • Fatigue tests and scatter (Chapters 12 and 13) • Special fatigue conditions (Chapters 14–17) • Fatigue of joints and structures (Chapters 18–20) • Fiber-metal laminates (Chapter 21) Each chapter presents a discussion of a speci?c subject.




Airplane Airworthiness ...


Book Description




Fatigue Analysis on Boeing 737 Wing


Book Description

Seminar paper from the year 2015 in the subject Engineering - Aerospace Technology, , course: Aeronautical Engineering, language: English, abstract: The fatigue life is essential for every aircraft to rectify several damages occurred on it. In this project we have done fatigue analysis of the aircraft wing Boeing 737 series wing. The detailed modeling of aircraft wing structure made by using the software CREO parametric 2.0. The stress analysis of the wing structure is carried out. The stresses are estimated by using the finite element approach with the help of NX-NASTRON to find out the fatigue life and safety factor of the structure. This Project describes about the finite element analysis of spar, ribs of a wing. The objective of this study is to reduce the weight to the maximum possible extent. The response of the wing structure will be evaluated. In this study prediction of fatigue life, safety factor, strength safety factor will be carried out.




Aging of U.S. Air Force Aircraft


Book Description

Many of the aircraft that form the backbone of the U.S. Air Force operational fleet are 25 years old or older. A few of these will be replaced with new aircraft, but many are expected to remain in service an additional 25 years or more. This book provides a strategy to address the technical needs and priorities associated with the Air Force's aging airframe structures. It includes a detailed summary of the structural status of the aging force, identification of key technical issues, recommendations for near-term engineering and management actions, and prioritized near-term and long-term research recommendations.













Proceedings of the Air Force Conference on Fatigue and Fracture of Aircraft Structures and Materials


Book Description

The document is comprised of papers presented at the Air Force Conference on Fatigue of Aircraft Structures and Materials, sponsored by the Air Force Flight Dynamics Laboratory (AFFDL) and the Air Force Materials Laboratory (AFML), Air Force Systems Command. The purpose of the Conference was to discuss technological advancements in fatigue and fracture theory. The Conference was comprised of ten technical sessions (including two panel discussions) entitled 'The Role of Materials in Structures'; 'Fundamentals I + II'; 'Criteria'; 'Fracture I + II'; 'Phenomena I + II'; 'Analysis'; 'Design and Service Experience'. A total of fifty-six technical papers were presented.




Handbook of Materials Failure Analysis with Case Studies from the Aerospace and Automotive Industries


Book Description

Handbook of Materials Failure Analysis: With Case Studies from the Aerospace and Automotive Industries provides a thorough understanding of the reasons materials fail in certain situations, covering important scenarios, including material defects, mechanical failure as a result of improper design, corrosion, surface fracture, and other environmental causes. The book begins with a general overview of materials failure analysis and its importance, and then logically proceeds from a discussion of the failure analysis process, types of failure analysis, and specific tools and techniques, to chapters on analysis of materials failure from various causes. Later chapters feature a selection of newer examples of failure analysis cases in such strategic industrial sectors as aerospace, oil & gas, and chemicals. - Covers the most common types of materials failure, analysis, and possible solutions - Provides the most up-to-date and balanced coverage of failure analysis, combining foundational knowledge, current research on the latest developments, and innovations in the field - Ideal accompaniment for those interested in materials forensic investigation, failure of materials, static failure analysis, dynamic failure analysis, fatigue life prediction, rotorcraft, failure prediction, fatigue crack propagation, bevel pinion failure, gasketless flange, thermal barrier coatings - Presents compelling new case studies from key industries to demonstrate concepts - Highlights the role of site conditions, operating conditions at the time of failure, history of equipment and its operation, corrosion product sampling, metallurgical and electrochemical factors, and morphology of failure