Fatigue Crack Growth of Two Advanced Titanium Alloys at Room and Elevated Temperature


Book Description

This paper provides fatigue crack growth information at low crack growth rates for two sheet titanium alloys: ?-21S, a ? alloy, and Ti-62222, an ? + ? alloy. Room (25°C) and elevated temperature (175°C) fatigue crack growth tests at two different stress ratios, R = 0.1 and 0.5, were performed. Effects of temperature and stress ratio were evaluated in order to study the complex interaction between fatigue, environment, and loading conditions. Crack-opening load was measured throughout the test from automated compliance measurements and was used to adjust fatigue crack growth data for crack closure. For ?-21S, fatigue crack growth rates were similar at 175 and 25°C at a stress ratio of 0.1, while crack growth rates were lower at 175 versus 25°C at a stress ratio of 0.5 for the same nominal ?K. Concepts associated with crack closure accounted for this as crack growth rates were found to be higher at 175°C than 25°C for both stress ratios when plotted as a function of ?Keff, showing a temperature dependency on crack growth rate. For Ti-62222, fatigue crack growth rates were comparable between 25 and 175°C for R = 0.5, but were different at R = 0.1 where crack closure was observed at 175°C. Fatigue crack growth behavior of these two titanium alloys was comparable for all loading and temperature conditions.













Atmospheric Influence on Fatigue Crack Propagation in Titanium Alloys at Elevated Temperature


Book Description

The fatigue crack propagation behavior of a Ti-6Al-4V alloy has been investigated at room temperature and at 300°C. Tests were run in air, high vacuum, and some other environments with controlled partial pressure of water vapor and oxygen. The enhancement of the fatigue crack growth rates observed in air in comparison to high vacuum, considered as an inert environment, is clearly attributed to the presence of water vapor. Tests in a controlled environment demonstrate that very low partial pressure can accelerate crack propagation. On the basis of previous studies on Al alloys and steels, two controlling mechanisms are considered and discussed, namely, a propagation-assisted water vapor adsorption and a hydrogen-assisted propagation.







Fatigue Crack Growth Characteristics of Thin Sheet Titanium Alloy Ti 6-2-2-2-2


Book Description

Fatigue crack growth rates of Ti 6-2-2-2-2 as a function of stress ratio, temperature (24 or 177 C), tensile orientation and environment (laboratory air or ultrahigh vacuum) are presented. Fatigue crack growth rates of Ti 6-2-2-2-2 are also compared with two more widely used titanium alloys (Timetal 21S and Ti 6Al-4V). The fatigue crack growth rate (da/dN) of Ti 6-2-2-2-2 in laboratory air is dependent upon stress ratio (R), particularly in the near-threshold and lower-Paris regimes. For low R (less than approximately 0.5), da/dN is influenced by crack closure behavior. At higher R (> 0.5), a maximum stress-intensity factor (K(sub max)) dependence is observed. Fatigue crack growth behavior is affected by test temperature between 24 and 177 C. For moderate to high applied cyclic-stress-intensity factors (delta-K), the slope of the log da/dN versus log delta-K curve is lower in 177 C laboratory air than 24 C laboratory air. The difference in slope results in lower values of da/dN for exposure to 177 C laboratory air compared to room temperature laboratory air. The onset of this temperature effect is dependent upon the applied R. This temperature effect has not been observed in ultrahigh vacuum. Specimen orientation has been shown to affect the slope of the log da/dN versus log delta-K curve in the Paris regime.Smith, Stephen W. and Piascik, Robert S.Langley Research CenterCRACK PROPAGATION; FATIGUE (MATERIALS); TITANIUM ALLOYS; CORROSION; STRESS RATIO; TEMPERATURE EFFECTS; CRACK CLOSURE; STRESS INTENSITY FACTORS