ICAF 2009, Bridging the Gap between Theory and Operational Practice


Book Description

The 31st Conference and the 25th Symposium of the International Committee on Aeronautical Fatigue will be hosted in Rotterdam, The Netherlands, by the National Aerospace Laboratory NLR, under the auspices of the Netherlands Association of Aeronautical Engineers NVvL, the Technical University of Delft and Stork Fokker AESP B.V. These Proceedings will consist of reviews of aeronautical fatigue activities presented by the national delegates of the 14 member nations of ICAF. It will also contain specialist papers presented by international authors with design, manufacturing, airworthiness regulations, operations and research backgrounds. The papers will be based on the theme “Bridging the gap between theory and operational practice”.




Fatigue and Fracture of Fibre Metal Laminates


Book Description

This book contributes to the field of hybrid technology, describing the current state of knowledge concerning the hybrid material concept of laminated metallic and composite sheets for primary aeronautical structural applications. It is the only book to date on fatigue and fracture of fibre metal laminates (FMLs). The first section of the book provides a general background of the FML technology, highlighting the major FML types developed and studied over the past decades in conjunction with an overview of industrial developments based on filed patents. In turn, the second section discusses the mechanical response to quasi-static loading, together with the fracture phenomena during quasi-static and cyclic loading. To consider the durability aspects related to strength justification and certification of primary aircraft structures, the third section discusses thermal aspects related to FMLs and their mechanical response to various environmental and acoustic conditions.




Fibre Metal Laminates


Book Description

Like New, No Highlights,No Markup,all pages are intact.




Fatigue of Materials II


Book Description

The papers in this collection cover a diverse range of topics on the topic of fatigue of materials. The editors have grouped the papers into five sections. Sections 1 and 2 contain papers that (i) review the current state of knowledge both related and relevant to the subject of fatigue behavior of materials, and (ii) present new, innovative, and emerging techniques for experimental evaluation of the fatigue behavior. Sections 3 and 4 focus on advanced materials that are used in performance-critical applications in the aerospace and automotive industries, such as the alloys of titanium, nickel, aluminum, and magnesium. Section 5 presents papers relating to other materials of engineering interest, such as iron and steel, polymer, rubber, and composites.




Fatigue of Structures and Materials


Book Description

Fatigue of structures and materials covers a wide scope of different topics. The purpose of the present book is to explain these topics, to indicate how they can be analyzed, and how this can contribute to the designing of fatigue resistant structures and to prevent structural fatigue problems in service. Chapter 1 gives a general survey of the topic with brief comments on the signi?cance of the aspects involved. This serves as a kind of a program for the following chapters. The central issues in this book are predictions of fatigue properties and designing against fatigue. These objectives cannot be realized without a physical and mechanical understanding of all relevant conditions. In Chapter 2 the book starts with basic concepts of what happens in the material of a structure under cyclic loads. It illustrates the large number of variables which can affect fatigue properties and it provides the essential background knowledge for subsequent chapters. Different subjects are presented in the following main parts: • Basic chapters on fatigue properties and predictions (Chapters 2–8) • Load spectra and fatigue under variable-amplitude loading (Chapters 9–11) • Fatigue tests and scatter (Chapters 12 and 13) • Special fatigue conditions (Chapters 14–17) • Fatigue of joints and structures (Chapters 18–20) • Fiber-metal laminates (Chapter 21) Each chapter presents a discussion of a speci?c subject.




Delamination Behaviour of Composites


Book Description

Given such advantages as low weight compared to strength and toughness, laminated composites are now used in a wide range of applications. Their increasing use has underlined the need to understand their principal mode of failure, delamination. This important book reviews key research in understanding and preventing delamination.The first part of the book reviews general issues such as the role of fracture mechanics in understanding delamination, design issues and ways of testing delamination resistance. Part two describes techniques for detecting and characterising delamination such as piezoelectric sensors, the use of lamb waves and acoustic emission techniques. The next two sections of the book discuss ways of studying and modelling delamination behaviour. The final part of the book reviews research on delamination behaviour in particular conditions such as shell and sandwich structures, z-pin bridging and resin bonding.With its distinguished editor and international team of contributors, Delamination behaviour of composites is a standard reference for all those researching laminated composites and using them in such diverse applications as microelectronics, aerospace, marine, automotive and civil engineering. - Reviews the role of fracture mechanics in understanding delamination, design issues and ways of testing delamination resistance - Discuss ways of studying and modelling delamination behaviour - A standard reference for all those researching laminated composites




Structural Connections for Lightweight Metallic Structures


Book Description

Increasing concern with fuel consumption leads to widespread interest in lightweight structures for transportation vehicles. Several competing technologies are available for the structural connections of these structures, namely welding, mechanical fastening / riveting, and adhesive technologies. Arranged in a single volume, this work is to presents state-of-the-art discussions of those aspects and processes presenting greater novelty whilst simultaneously keeping wide applicability potential and interest. The topics chosen have the common feature of being of currently applied in lightweight structures, and one of the characteristics of this work is bringing together relevant state-of-the-art information usually presented in separate publications specializing in a single technology. The book provides discussions and examples of concrete applications, so that it appeals to researchers and designers and engineers involved in the design and fabrication of lightweight structures.




Residual Stress, Thermomechanics & Infrared Imaging, Hybrid Techniques and Inverse Problems, Volume 8


Book Description

Residual Stress, Thermomechanics & Infrared Imaging, Hybrid Techniques and Inverse Problems, Volume 8: Proceedings of the 2013 Annual Conference on Experimental and Applied Mechanics, the eighth volume of eight from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on a wide range of areas, including: Advances in Residual Stress Measurement Methods Residual Stress Effects on Material Performance Optical, Ultrasonic, and Diffraction Methods for Residual Stress Measurement Thermomechanics & Infrared Imaging Inverse Methods Inverse Methods in Plasticity Applications in Experimental Mechanics




Composite Joints and Connections


Book Description

The growing use of composites over metals for structural applications has made a thorough understanding of the behaviour of composite joints in various applications essential for engineers, but has also presented them with a new set of problems. Composite joints and connections addresses these differences and explores the design, modelling and testing of bonded and bolted joints and connections.Part one discusses bolted joints whilst part two examines bonded joints. Chapters review reinforcement techniques and applications for composite bolted and bonded joints and investigate the causes and effects of fatigue and stress on both types of joint in various applications and environments. Topics in part one include metal hybridization, glass-reinforced aluminium (GLARE), hybrid fibre metal laminates (FML), glass fibre reinforced polymer (GFRP) and carbon fibre reinforced polymer (CFRP) composites. Topics in part two include calculation of strain energy release rates, simulating fracture and fatigue failure using cohesive zone models, marine and aerospace applications, advanced modelling, stress analysis of bonded patches and scarf repairs.Composite joints and connections is a valuable reference for composite manufacturers and composite component fabricators, the aerospace, automotive, shipbuilding and civil engineering industries and for anyone involved in the joining and repair of composite structures. - Explores the design, modelling and testing of bonded and bolted joints and connections - Reviews reinforcement techniques and applications for composite bolted and bonded joints - Investigates the causes and effects of fatigue and stress on bolted and bonded joints in various applications and environments




Dynamic Deformation, Damage and Fracture in Composite Materials and Structures


Book Description

Dynamic Deformation, Damage and Fracture in Composite Materials and Structures, Second Edition reviews various aspects of dynamic deformation, damage and fracture, mostly in composite laminates and sandwich structures, and in a broad range of application areas including aerospace, automotive, defense and sports engineering. This book examines low- and high-velocity loading and assesses shock, blast and penetrative events, and has been updated to cover important new developments such as the use of additive manufacturing to produce composites, including fiber-reinforced ones. New microstructural, experimental, theoretical, and numerical studies with advanced tools are included as well. The book also features four new chapters covering topics such as dynamic delamination, dynamic deformation and fracture in 3D-printed composites, ballistic impacts with fragmenting projectiles, and the effect of multiple impacting. - Examines dynamic deformation and fracture of composite materials, covering experimental, analytical and numerical aspects - Features four new chapters covering topics such as dynamic interfacial fracture, fracture in 3D-printed composites, ballistic impacts with fragmenting projectiles, and the effect of multiple impacting - Addresses important application areas such as aerospace, automotive, wind energy, defense and sports