Automated Diagnostics and Analytics for Buildings


Book Description

With the widespread availability of high-speed, high-capacity microprocessors and microcomputers with high-speed communication ability, and sophisticated energy analytics software, the technology to support deployment of automated diagnostics is now available, and the opportunity to apply automated fault detection and diagnostics to every system and piece of equipment in a facility, as well as for whole buildings, is imminent. The purpose of this book is to share information with a broad audience on the state of automated fault detection and diagnostics for buildings applications, the benefits of those applications, emerging diagnostic technology, examples of field deployments, the relationship to codes and standards, automated diagnostic tools presently available, guidance on how to use automated diagnostics, and related issues.




Model-based Fault Diagnosis in Dynamic Systems Using Identification Techniques


Book Description

Safety in industrial process and production plants is a concern of rising importance but because the control devices which are now exploited to improve the performance of industrial processes include both sophisticated digital system design techniques and complex hardware, there is a higher probability of failure. Control systems must include automatic supervision of closed-loop operation to detect and isolate malfunctions quickly. A promising method for solving this problem is "analytical redundancy", in which residual signals are obtained and an accurate model of the system mimics real process behaviour. If a fault occurs, the residual signal is used to diagnose and isolate the malfunction. This book focuses on model identification oriented to the analytical approach of fault diagnosis and identification covering: choice of model structure; parameter identification; residual generation; and fault diagnosis and isolation. Sample case studies are used to demonstrate the application of these techniques.




Fault Detection and Diagnosis in Industrial Systems


Book Description

Early and accurate fault detection and diagnosis for modern chemical plants can minimize downtime, increase the safety of plant operations, and reduce manufacturing costs. This book presents the theoretical background and practical techniques for data-driven process monitoring. It demonstrates the application of all the data-driven process monitoring techniques to the Tennessee Eastman plant simulator, and looks at the strengths and weaknesses of each approach in detail. A plant simulator and problems allow readers to apply process monitoring techniques.




A Dictionary of Business Research Methods


Book Description

This accessible new dictionary provides clear and authoritative definitions of terms, approaches, and techniques in the area of business research methods. It covers research philosophies including research design and qualitative and quantitative methods, types of data and data collection techniques, and organizing and reporting research finding. It is an invaluable resource for students, academics, and professionals learning about research methods as part of a business degree, and undertaking research in many fields including sociology, psychology, and marketing.




Sensor Fault Diagnosis


Book Description

Recent advances in information and communication technologies, embedded systems and sensor networks have generated significant research activity in the development of so-called cyber-physical systems. An example of a large network of cyber-physical systems is a smart city with intelligent infrastructures for supporting the environment, energy and water distribution, transportation, telecommunication, health care, home automation, and so on. From a systems point of view, safety, reliability and fault tolerance become key challenges in designing cyber-physical systems. One of the major issues is detecting and correcting faults in the sensors that form a critical part of these networks and systems. For example, if two sensors should provide similar information, how do you know which one is at fault should their readings suddenly greatly differ? Sensor Fault Diagnosis addresses all the issues in sensor fault detection and isolation. It provides a clear tutorial on the challenges and models that can be used to address them. It describes, in detail, the requirements for modeling the systems, designing the architecture, detecting faults, isolating those faults, and presents learning techniques for enhancing performance. This monograph will appeal to all researchers and students working on large sensor networks and systems.




Monitoring and Control of Information-Poor Systems


Book Description

The monitoring and control of a system whose behaviour is highly uncertain is an important and challenging practical problem. Methods of solution based on fuzzy techniques have generated considerable interest, but very little of the existing literature considers explicit ways of taking uncertainties into account. This book describes an approach to the monitoring and control of information-poor systems that is based on fuzzy relational models which generate fuzzy outputs. The first part of Monitoring and Control of Information-Poor Systems aims to clarify why design decisions must take account of the uncertainty associated with optimal choices, and to explain how a fuzzy relational model can be used to generate a fuzzy output, which reflects the uncertainties associated with its predictions. Part two gives a brief introduction to fuzzy decision-making and shows how it can be used to design a predictive control scheme that is suitable for controlling information-poor systems using inaccurate measurements. Part three describes different ways in which fuzzy relational models can be generated online and explains the practical issues associated with their identification and application. The final part of the book provides examples of the use of the previously described techniques in real applications. Key features: Describes techniques applicable to a wide range of engineering, environmental, medical, financial and economic applications Uses simple examples to help explain the basic techniques for dealing with uncertainty Describes a novel design approach based on the use of fuzzy relational models Considers practical issues associated with applying the techniques to real systems Monitoring and Control of Information-Poor Systems forms an invaluable resource for a wide range of graduate students, and is also a comprehensive reference for researchers and practitioners working on problems involving mathematical modelling and control.




Building Energy Simulation


Book Description

The second edition of Building Energy Simulation includes studies of various components and systems of buildings and their effect on energy consumption, with the help of DesignBuilderTM, a front-end for the EnergyPlus simulation engine, supported by examples and exercises. The book employs a "learning by doing" methodology. It explains simulation-input parameters and how-to-do analysis of the simulation output, in the process explaining building physics and energy simulation. Divided into three sections, it covers the fundamentals of energy simulation followed by advanced topics in energy simulation and simulation for compliance with building codes and detailed case studies for comprehensive building energy simulation. Features: Focuses on learning building energy simulation while being interactive through examples and exercises. Explains the building physics and the science behind the energy performance of buildings. Encourages an integrated design approach by explaining the interactions between various building systems and their effect on energy performance of building. Discusses a how-to model for building energy code compliance including three projects to practice whole building simulation. Provides hands-on training of building energy simulation tools: DesignBuilderTM and EnergyPlus. Includes practical projects problems, appendices and CAD files in the e-resources section. Building Energy Simulation is intended for students and researchers in building energy courses, energy simulation professionals, and architects.







Advances in Building Energy Research


Book Description

Offers information on the environmental science and performance of buildings, linking fresh technologies and methodologies with the research on systems, simulations and standards. This book is suitable for architects and building engineers, environmental engineers, industry professionals, students, teachers and researchers in building science.




Diagnosis and Robust Control of Complex Building Central Chilling Systems for Enhanced Energy Performance


Book Description

This book discusses enhancing the overall energy performance of building central air-conditioning systems through fault diagnosis and robust control strategies. Fault diagnosis strategies aim to determine the exact cause of problems and evaluate the energy impact on the system, while robust control strategies aim to manage chilled water systems to avoid the occurrence of low delta-T syndrome and deficit flow problems. Presenting the first academic study of the diagnostic method and control mechanism of “small temperature difference syndrome”, the book describes the highly robust and adaptive fault-tolerant control method developed to overcome the influences of external disturbance on the process control in practical applications. The diagnostic technology developed provides a predictive assessment of the energy dissipation effect of the fault. This book is a valuable reference resource for researchers and designers in the areas of building energy management and built environment control, as well as for senior undergraduate and graduate students.