Fault Detection and Root Cause Diagnosis Using Sparse Principal Component Analysis (SPCA).


Book Description

Data based methods are widely used in process industries for fault detection and diagnosis. Among the data-based methods multivariate statistical methods, for example, Principal Component Analysis (PCA), Projection to Latent Squares (PLS), and Independent Component Analysis (ICA) are most widely used methods. These methods in general are successful in detecting process fault, however, diagnosis of the root cause is always not very accurate. The primary goal of the thesis is to improve the fault diagnosis ability of PCA based methods. In PCA, each Principal Component (PC) is a linear combination of all the variables, therefore makes it difficult to identify the root cause from the violation of a PC. Sparse Principal Component Analysis (SPCA) is one version of PCA that gets a sparse description of the PCA loading matrix making it more suitable for fault diagnosis. The present research aims to devise novel strategies to find the sparse description of loading matrix, more aligned with process fault detection and diagnosis. The thesis also looks into improving the fault diagnosis of PCA using clustering methods. The entire thesis can be divided into three major tasks. First, a novel fault detection and diagnosis method is proposed based on the Sparse Principal Component Analysis (SPCA) approach. This approach incorporates a new criterion based on the Fault Detection Rates (FDRs) and False Alarm Rates (FARs) into Zou et al.'s (2006) SPCA algorithms. The objective here is to find appropriate the (Number of Non-Zero Loadings) NNZLs for SPCs that can result in low FARs and high FDRs. A comparison between PCA and four SPCA-based methods for FDD using a continuous stirred tank heater (CSTH) as a benchmark system is also carried out. The results indicate that shortcomings of the PCA can be overcome using the Sparse Principal Component Analysis (SPCA) that uses the novel NNZL criterion. The FDR-FAR SPCA approach gives the highest FDRs for the SPE statistic (93.8%). The second task focuses on developing statistical methods to decide on the non-zero elements of the loading elements of SPCA. Rather than using heuristics, the proposed methods use the distribution of the loading elements to decide if an element should be set to zero. Two SPCA algorithms are proposed to find the NNZL and its position of each PC. The first algorithm is based on bootstrapping of the data, and the second approach is based Iterative Principal Component Analysis (IPCA). The proposed methods are implemented on a CSTH process to test the performance with PCA- and other SPCA-based methods for fault detection and diagnosis. The results reveal that the approaches have superior performance in fault detection, as well as diagnosis of the root cause of fault. Both the Bootstrap-SPCA and Sparse-IPCA methods give the highest FDRs for fault 1 for the SPE statistic (99.3% and 95.76%, respectively) As the third task, this research combines the clustering (k-means) algorithm and PCA algorithm to improve the detection and diagnosis of the fault. PCA has the advantage of detecting the fault without the need for data labelling, while clustering is able to distinguish data from different fault groups into separate clusters. By combining these two algorithms we are able to have better detection and diagnosis of fault and eliminate the need for data labelling. The performance of the proposed method is demonstrated in simulated and large-scale industrial case studies.




Fault Detection and Root Cause Diagnosis Using Dynamic Bayesian Network


Book Description

This thesis presents two real time process fault detection and diagnosis (FDD) techniques incorporating process data and prior knowledge. Unlike supervised monitoring techniques, both these methods can perform without having any prior information of a fault. In the first part of this research, a hybrid methodology is developed combining principal component analysis (PCA), Bayesian network (BN) and multiple uncertain (likelihood) evidence to improve the diagnostic capacity of PCA and existing PCA-BN schemes with hard evidence based updating. A dynamic BN (DBN) based FDD methodology is proposed in the later part of this work which provides detection and accurate diagnosis by a single tool. Furthermore, fault propagation pathway is analyzed using the predictive feature of a BN and cause-effect relationships among the process variables. Proposed frameworks are successfully validated by applying to several process models.







Analysis of Medical Modalities for Improved Diagnosis in Modern Healthcare


Book Description

In modern healthcare, various medical modalities play an important role in improving the diagnostic performance in healthcare systems for various applications, such as prosthesis design, surgical implant design, diagnosis and prognosis, and detection of abnormalities in the treatment of various diseases. Analysis of Medical Modalities for Improved Diagnosis in Modern Healthcare discusses the uses of analysis, modeling, and manipulation of modalities, such as EEG, ECG, EMG, PCG, EOG, MRI, and FMRI, for an automatic identification, classification, and diagnosis of different types of disorders and physiological states. The analysis and applications for post-processing and diagnosis are much-needed topics for researchers and faculty members all across the world in the field of automated and efficient diagnosis using medical modalities. To meet this need, this book emphasizes real-time challenges in medical modalities for a variety of applications for analysis, classification, identification, and diagnostic processes of healthcare systems. Each chapter starts with the introduction, need and motivation of the medical modality, and a number of applications for the identification and improvement of healthcare systems. The chapters can be read independently or consecutively by research scholars, graduate students, faculty members, and practicing scientists who wish to explore various disciplines of healthcare systems, such as computer sciences, medical sciences, and biomedical engineering. This book aims to improve the direction of future research and strengthen research efforts of healthcare systems through analysis of behavior, concepts, principles, and case studies. This book also aims to overcome the gap between usage of medical modalities and healthcare systems. Several novel applications of medical modalities have been unlocked in recent years, therefore new applications, challenges, and solutions for healthcare systems are the focus of this book.




Development of PCA-based Fault Detection System Based on Various of NOC Models for Continuous-based Process


Book Description

Multivariate Statistical Process Control (MSPC) technique has been widely used for fault detection and diagnosis. Currently, contribution plots are used as basic tools for fault diagnosis in MSPC approaches. This plot does not exactly diagnose the fault, it just provides greater insight into possible causes and thereby narrow down the search. Hence, the cause of the faults cannot be found in a straightforward manner. Therefore, this study is conducted to introduce a new approach for detecting and diagnosing fault via correlation technique. The correlation coefficient is determined using multivariate analysis techniques, namely Principal Component Analysis (PCA). In order to overcome these problems, the objective of this research is to develop new approaches, which can improve the performance of the present conventional MSPC methods. The new approaches have been developed, the Outline Analysis Approach for examining the distribution of Principal Component Analysis (PCA) scores, the Correlation Coefficient Approach for detecting changes in the correlation structure within the variables. This research proposed PCA Outline Analysis Control Chart for fault detection. The result from the conventional method and ne approach were compared based on their accuracy and sensitivity. Based on the results of the study, the new approaches generally performed better compared to the conventional approaches, particularly the PCA Outline Analysis Control Chart.










Methods for Improving the Reliability of Semiconductor Fault Detection and Diagnosis with Principal Component Analysis


Book Description

This dissertation presents several methods for improving multivariate monitoring capabilities, with an emphasis on semiconductor manufacturing operations. Although many alternative algorithms have been proposed for multivariate statistical process control, principal component analysis (PCA) remains the most commonly used, and therefore serves as a core component of all of the methods that are developed within this work.




Fault Detection and Diagnosis in Industrial Systems


Book Description

Early and accurate fault detection and diagnosis for modern chemical plants can minimize downtime, increase the safety of plant operations, and reduce manufacturing costs. This book presents the theoretical background and practical techniques for data-driven process monitoring. It demonstrates the application of all the data-driven process monitoring techniques to the Tennessee Eastman plant simulator, and looks at the strengths and weaknesses of each approach in detail. A plant simulator and problems allow readers to apply process monitoring techniques.




Chemical Process Performance Evaluation


Book Description

The latest advances in process monitoring, data analysis, and control systems are increasingly useful for maintaining the safety, flexibility, and environmental compliance of industrial manufacturing operations. Focusing on continuous, multivariate processes, Chemical Process Performance Evaluation introduces statistical methods and modeling te