Fe-S Cluster Enzymes Part A


Book Description

Fe-S Cluster Enzymes, Part A, Volume 595 is the first of two volumes focused on Fe-S cluster enzymes. New topics of note in this series include Electrochemistry of Fe/S Proteins, Genetic, biochemical and biophysical methods for studying Fe-S proteins and their assembly, Fluorescent reporters to track Fe-S cluster assembly and transfer reactions, Mechanism-based strategies for structural characterization of radical SAM reaction intermediates, Purification and Characterization of Recalcitrant Cobalamin-Dependent Radical S-adenosylmethionine Methylases, A polymerase with potential: the Fe-S cluster in Human DNA Primase, In Vitro Studies of Cellular Iron-sulfur Cluster Biosynthesis, Trafficking and Transport, and Fe-S cluster Hsp70 Chaperones: the ATPase cycle and protein interactions. - Contain contributions from leading authorities on enzymology - Informs and updates on all the latest developments in the field




Fe-S Cluster Enzymes Part B


Book Description

Methods in Enzymology, Volume 599 is the second of two volumes focused on Fe-S cluster enzymes. Topics of interest in this new release include steps towards understanding mitochondrial Fe/S cluster biogenesis, iron sulfur clusters in zinc finger proteins, electrochemistry of Iron-sulfur enzymes, NRVS for Fe in biology and its experiment and basic interpretation, methods for studying iron regulatory protein 1, an important protein in human iron metabolism, the characterization of glutaredoxin Fe-S cluster binding interactions using circular dichroism spectroscopy, fluorescent reporters to track Fe-S cluster assembly and transfer reactions, methods for studying the Fe-S cluster containing base excision repair glycosylase MUTYH, and more. - Contain contributions from leading authorities on enzymology - Informs and updates on all the latest developments in the field




Fe-S Cluster Enzymes Part A


Book Description

Fe-S Cluster Enzymes, Part A, Volume 595 is the first of two volumes focused on Fe-S cluster enzymes. New topics of note in this series include Electrochemistry of Fe/S Proteins, Genetic, biochemical and biophysical methods for studying Fe-S proteins and their assembly, Fluorescent reporters to track Fe-S cluster assembly and transfer reactions, Mechanism-based strategies for structural characterization of radical SAM reaction intermediates, Purification and Characterization of Recalcitrant Cobalamin-Dependent Radical S-adenosylmethionine Methylases, A polymerase with potential: the Fe-S cluster in Human DNA Primase, In Vitro Studies of Cellular Iron-sulfur Cluster Biosynthesis, Trafficking and Transport, and Fe-S cluster Hsp70 Chaperones: the ATPase cycle and protein interactions.




Fe-S Cluster Enzymes Part B


Book Description

Methods in Enzymology, Volume 599 is the second of two volumes focused on Fe-S cluster enzymes. Topics of interest in this new release include steps towards understanding mitochondrial Fe/S cluster biogenesis, iron sulfur clusters in zinc finger proteins, electrochemistry of Iron-sulfur enzymes, NRVS for Fe in biology and its experiment and basic interpretation, methods for studying iron regulatory protein 1, an important protein in human iron metabolism, the characterization of glutaredoxin Fe-S cluster binding interactions using circular dichroism spectroscopy, fluorescent reporters to track Fe-S cluster assembly and transfer reactions, methods for studying the Fe-S cluster containing base excision repair glycosylase MUTYH, and more.




Fe-S Proteins


Book Description

This volume explores current technologies used to investigate the formation, insertion, and function of metalloclusters associated with proteins. Chapters describe relevant topics about Fe-S cluster metabolism are explored through genetic, biochemical, spectroscopic methods. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Fe-S Proteins: Methods and Protocols aims to be a useful practical guide to researchers to help further their study in this field.




Radicals for Life


Book Description

Radicals for Life: the Various Forms of Nitric Oxide provides an up-to-date overview of the role of nitrosocompounds and nitrosyl-iron complexes in physiology. Nitrosocompounds can be considered as stabilised forms of nitric oxide, one of the most important regulatory molecules in physiology today. Many nitrosocompounds share some of the physiological functions of nitric oxide, and may be formed inside living organisms. This is the first book to be published that is dedicated to the role of such nitrosocompounds in physiology, with particular emphasis on the nitrosocompounds that are endogenously formed in higher organisms and humans. Points of discussion include: physical and chemical properties of the compounds, the main chemical pathways in vivo, as well as the physiological effects that have been recognised to date. Each of the nineteen chapters is written by distinguished specialists in the field, well known for their original and important contributions to the subject. Also included are results from a wide range of studies in vitro, in cell cultures, animal models and human volunteers. Examples of alternative forms of nitric oxide, with special emphasis on their protective role against widespread human diseases like atherosclerosis, Alzheimer's disease, diabetes, sexual dysfunction, and renal insufficiency to stroke and ischemia are also included. - First monograph to consider and provide an overview of endogenous nitrosocompounds and nitrosyl-iron complexes - Extensive bibliographic references, written by specialists of human physiology - Providing high scientific quality with a focus on implications for human diseases




Radical SAM Enzymes


Book Description

Radical SAM Enzymes, Volume 606, the latest release in the Methods in Enzymology series, highlights new advances in the field, with this new volume presenting interesting chapters on the Characterization of the glycyl radical enzyme choline trimethylamine-lyase and its radical S-adenosylmethionine activating enzyme, Diphathimide biosynthesis, Radical SAM glycyl radical activating enzymes, Radical SAM enzyme BioB in the biosynthesis of biotin, Biogenesis of the PQQ cofactor, Role of MoaAC in the biogenesis of the molybdenum cofactor, Biosynthesis of the nitrogenase cofactor, Bioinformatics of the radical SAM superfamily, The involvement of SAM radical enzymes in the biosynthesis of methanogenic coenzymes, methanopterin and coenzyme F420, and more.




Iron-Sulfur Clusters in Chemistry and Biology


Book Description

This volume on iron-sulfur proteins includes chapters that describe the initial discovery of iron-sulfur proteins in the 1960s to elucidation of the roles of iron sulfur clusters as prosthetic groups of enzymes, such as the citric acid cycle enzyme, aconitase, and numerous other proteins, ranging from nitrogenase to DNA repair proteins. The capacity of iron sulfur clusters to accept and delocalize single electrons is explained by basic chemical principles, which illustrate why iron sulfur proteins are uniquely suitable for electron transport and other activities. Techniques used for detection and stabilization of iron-sulfur clusters, including EPR and Mossbauer spectroscopies, are discussed because they are important for characterizing unrecognized and elusive iron sulfur proteins. Recent insights into how nitrogenase works have arisen from multiple advances, described here, including studies of high-resolution crystal structures. Numerous chapters discuss how microbes, plants, and animals synthesize these complex prosthetic groups, and why it is important to understand the chemistry and biogenesis of iron sulfur proteins. In addition to their vital importance in mitochondrial respiration, numerous iron sulfur proteins are important in maintenance of DNA integrity. Multiple rare human diseases with different clinical presentations are caused by mutations of genes in the iron sulfur cluster biogenesis pathway. Understanding iron sulfur proteins is important for understanding a rapidly expanding group of metabolic pathways important in all kingdoms of life, and for understanding processes ranging from nitrogen fixation to human disease.




Transition Metals in Catalysis


Book Description

Iron–sulfur (FeS) centers are essential protein cofactors in all forms of life. They are involved in many key biological processes. In particular, Fe-S centers not only serve as enzyme cofactors in catalysis and electron transfer, they are also indispensable for the biosynthesis of complex metal-containing cofactors. Among these cofactors are the molybdenum (Moco) and tungsten (Wco) cofactors. Both Moco/Wco biosynthesis and Fe-S cluster assembly are highly conserved among all kingdoms of life. After formation, Fe-S clusters are transferred to carrier proteins, which insert them into recipient apo-proteins. Moco/Wco cofactors are composed of a tricyclic pterin compound, with the metal coordinated to its unique dithiolene group. Moco/Wco biosynthesis starts with an Fe-S cluster-dependent step involving radical/S-adenosylmethionine (SAM) chemistry. The current lack of knowledge of the connection of the assembly/biosynthesis of complex metal-containing cofactors is due to the sheer complexity of their synthesis with regard to both the (genetic) regulation and (chemical) metal center assembly. Studies on these metal-cofactors/cofactor-containing enzymes are important for understanding fundamental cellular processes. They will also provide a comprehensive view of the complex biosynthesis and the catalytic mechanism of metalloenzymes that underlie metal-related human diseases.




Iron-sulfur (Fe-S) Cluster Assembly


Book Description

Abstract: Assembly of iron-sulfur (Fe-S) clusters and maturation of Fe-S proteins in vivo require complex machineries. In Escherichia coli, under adverse stress conditions, this process is achieved by the SUF system that contains six proteins as follows: SufA, SufB, SufC, SufD, SufS, and SufE. Here, we provide a detailed characterization of the SufBCD complex whose function was so far unknown. Using biochemical and spectroscopic analyses, we demonstrate the following: (i) the complex as isolated exists mainly in a 1:2:1 (B:C:D) stoichiometry; (ii) the complex can assemble a [4Fe-4S] cluster in vitro and transfer it to target proteins; and (iii) the complex binds one molecule of flavin adenine nucleotide per SufBC2D complex, only in its reduced form (FADH2), which has the ability to reduce ferric iron. These results suggest that the SufBC2D complex functions as a novel type of scaffold protein that assembles an Fe-S cluster through the mobilization of sulfur from the SufSE cysteine desulfurase and the FADH2-dependent reductive mobilization of iron