Law in the Laboratory


Book Description

The National Institutes of Health and the National Science Foundation together fund more than $40 billon of research annually in the United States and around the globe. These large public expenditures come with strings, including a complex set of laws and guidelines that regulate how scientists may use NIH and NSF funds, how federally funded research may be conducted, and who may have access to or own the product of the research. Until now, researchers have had little instruction on the nature of these laws and how they work. But now, with Robert P. Charrow’s Law in the Laboratory, they have a readable and entertaining introduction to the major ethical and legal considerations pertaining to research under the aegis of federal science funding. For any academic whose position is grant funded, or for any faculty involved in securing grants, this book will be an essential reference manual. And for those who want to learn how federal legislation and regulations affect laboratory research, Charrow’s primer will shed light on the often obscured intersection of government and science.




Clinical Laboratory Improvement Act of 1976


Book Description







Clinical Laboratory Improvement Act of 1977


Book Description




Direct-to-Consumer Genetic Testing


Book Description

Today, scores of companies, primarily in the United States and Europe, are offering whole genome scanning services directly to the public. The proliferation of these companies and the services they offer demonstrate a public appetite for this information and where the future of genetics may be headed; they also demonstrate the need for serious discussion about the regulatory environment, patient privacy, and other policy implications of direct-to-consumer (DTC) genetic testing. Rapid advances in genetic research already have begun to transform clinical practice and our understanding of disease progression. Existing research has revealed a genetic basis or component for numerous diseases, including Parkinson's disease, Alzheimer's disease, diabetes, heart disease, and several forms of cancer. The availability of the human genome sequence and the HapMap, plummeting costs of high-throughput screening, and increasingly sophisticated computational analyses have led to an explosion of discoveries of linkages between patterns of genetic variation and disease susceptibility. While this research is by no means a straight path toward better public health, improved knowledge of the genetic linkages has the potential to change fundamentally the way health professionals and public health practitioners approach the prevention and treatment of disease. Realizing this potential will require greater sophistication in the interpretation of genetic tests, new training for physicians and other diagnosticians, and new approaches to communicating findings to the public. As this rapidly growing field matures, all of these questions require attention from a variety of perspectives. To discuss some of the foregoing issues, several units of the National Academies held a workshop on August 31 and September 1, 2009, to bring together a still-developing community of professionals from a variety of relevant disciplines, to educate the public and policy-makers about this emerging field, and to identify issues for future study. The meeting featured several invited presentations and discussions on the many technical, legal, policy, and ethical questions that such DTC testing raises, including: (1) overview of the current state of knowledge and the future research trajectory; (2) shared genes and emerging issues in privacy; (3) the regulatory framework; and (4) education of the public and the medical community.







Clinical Laboratory Improvement Act of 1978


Book Description




Returning Individual Research Results to Participants


Book Description

When is it appropriate to return individual research results to participants? The immense interest in this question has been fostered by the growing movement toward greater transparency and participant engagement in the research enterprise. Yet, the risks of returning individual research resultsâ€"such as results with unknown validityâ€"and the associated burdens on the research enterprise are competing considerations. Returning Individual Research Results to Participants reviews the current evidence on the benefits, harms, and costs of returning individual research results, while also considering the ethical, social, operational, and regulatory aspects of the practice. This report includes 12 recommendations directed to various stakeholdersâ€"investigators, sponsors, research institutions, institutional review boards (IRBs), regulators, and participantsâ€"and are designed to help (1) support decision making regarding the return of results on a study-by-study basis, (2) promote high-quality individual research results, (3) foster participant understanding of individual research results, and (4) revise and harmonize current regulations.