Ferroelectrics in Microwave Devices, Circuits and Systems


Book Description

Today’s wireless communications and information systems are heavily based on microwave technology. Current trends indicate that in the future along with - crowaves, the millimeter wave and Terahertz technologies will be used to meet the growing bandwidth and overall performance requirements. Moreover, motivated by the needs of the society, new industry sectors are gaining ground; such as wi- less sensor networks, safety and security systems, automotive, medical, envir- mental/food monitoring, radio tags etc. Furthermore, the progress and the pr- lems in the modern society indicate that in the future these systems have to be more user/consumer friendly, i. e. adaptable, reconfigurable and cost effective. The mobile phone is a typical example which today is much more than just a phone; it includes a range of new functionalities such as Internet, GPS, TV, etc. To handle, in a cost effective way, all available and new future standards, the growing n- ber of the channels and bandwidth both the mobile handsets and the associated systems have to be agile (adaptable/reconfigurable). The complex societal needs have initiated considerable activities in the field of cognitive and software defined radios and triggered extensive research in adequate components and technology platforms. To meet the stringent requirements of these systems, especially in ag- ity and cost, new components with enhanced performances and new functionalities are needed. In this sense the components based on ferroelectrics have greater - tential and already are gaining ground.




Plasmonic-Organic and Silicon-Organic Hybrid Modulators for High-Speed Signal Processing


Book Description

High-speed electro-optic modulators in silicon platform are introduced and experimentally verified. The devices rely on plasmonic and photonic slot waveguides and are combined with efficient organic electro-optic materials. The bandwidth limitation of conventional silicon-organic-hybrid modulators is circumvented by capacitive coupling of the microwave signal. An advanced terahertz link that upconverts data directly from a 360 GHz carrier to an optical carrier is demonstrated for the first time.




Porous Semiconductors


Book Description

Porous Semiconductors: Optical Properties and Applications provides an examination of porous semiconductor materials. Beginning with a description of the basic electrochemistry of porous semiconductors and the different kinds of porous semiconductor materials that can be fabricated, the book moves on to describe the fabrication processes used in the production of porous semiconductor optical components. Concluding the text, a number of optical components based on porous semiconductor materials are discussed in depth. Porous Semiconductors: Optical Properties and Applications provides a thorough grounding in the design, fabrication and theory behind the optical applications of porous semiconductor materials for graduate and undergraduate students interested in optics, photonics, MEMS, and material science. The book is also a valuable reference for scientists, researchers, and engineers in the field of optics and materials science.




Composite Materials


Book Description

The first edition of "Composite Materials" introduced a new way of looking at composite materials. This second edition expands the book’s scope to emphasize application-driven and process-oriented materials development. The approach is vibrant yet functional.




Metal Oxide Nanoparticles in Organic Solvents


Book Description

Metal Oxide Nanoparticles in Organic Solvents discusses recent advances in the chemistry involved for the controlled synthesis and assembly of metal oxide nanoparticles, the characterizations required by such nanoobjects, and their size and shape depending properties. In the last few years, a valuable alternative to the well-known aqueous sol-gel processes was developed in the form of nonaqueous solution routes. Metal Oxide Nanoparticles in Organic Solvents reviews and compares surfactant- and solvent-controlled routes, as well as providing an overview of techniques for the characterization of metal oxide nanoparticles, crystallization pathways, the physical properties of metal oxide nanoparticles, their applications in diverse fields of technology, and their assembly into larger nano- and mesostructures. Researchers and postgraduates in the fields of nanomaterials and sol-gel chemistry will appreciate this book’s informative approach to chemical formation mechanisms in relation to metal oxides.




Micromechanisms of Fracture and Fatigue


Book Description

Micromechanisms of Fracture and Fatigue forms the culmination of 20 years of research in the field of fatigue and fracture. It discusses a range of topics and comments on the state of the art for each. The first part is devoted to models of deformation and fracture of perfect crystals. Using various atomistic methods, the theoretical strength of solids under simple and complex loading is calculated for a wide range of elements and compounds, and compared with experimental data. The connection between the onset of local plasticity in nanoindentation tests and the ideal shear strength is analysed using a multi-scale approach. Moreover, the nature of intrinsic brittleness or ductility of perfect crystal lattices is demonstrated by the coupling of atomistic and mesoscopic approaches, and compared with brittle/ductile behaviour of engineering materials. The second part addresses extrinsic sources of fracture toughness of engineering materials, related to their microstructure and microstructurally-induced crack tortuosity. Micromechanisms of ductile fracture are also described, in relation to the fracture strain of materials. Results of multilevel modelling, including statistical aspects of microstructure, are used to explain remarkable phenomena discovered in experiments. In the third part of the book, basic micromechanisms of fatigue cracks propagation under uniaxial and multiaxial loading are discussed on the basis of the unified mesoscopic model of crack tip shielding and closure, taking both microstructure and statistical effects into account. Applications to failure analysis are also outlined, and an attempt is made to distinguish intrinsic and extrinsic sources of materials resistance to fracture. Micromechanisms of Fracture and Fatigue provides scientists, researchers and postgraduate students with not only a deep insight into basic micromechanisms of fracture behaviour of materials, but also a number of engineering applications.




Tuneable Film Bulk Acoustic Wave Resonators


Book Description

To handle many standards and ever increasing bandwidth requirements, large number of filters and switches are used in transceivers of modern wireless communications systems. It makes the cost, performance, form factor, and power consumption of these systems, including cellular phones, critical issues. At present, the fixed frequency filter banks based on Film Bulk Acoustic Resonators (FBAR) are regarded as one of the most promising technologies to address performance -form factor-cost issues. Even though the FBARs improve the overall performances the complexity of these systems remains high. Attempts are being made to exclude some of the filters by bringing the digital signal processing (including channel selection) as close to the antennas as possible. However handling the increased interference levels is unrealistic for low-cost battery operated radios. Replacing fixed frequency filter banks by one tuneable filter is the most desired and widely considered scenario. As an example, development of the software based cognitive radios is largely hindered by the lack of adequate agile components, first of all tuneable filters. In this sense the electrically switchable and tuneable FBARs are the most promising components to address the complex cost-performance issues in agile microwave transceivers, smart wireless sensor networks etc. Tuneable Film Bulk Acoustic Wave Resonators discusses FBAR need, physics, designs, modelling, fabrication and applications. Tuning of the resonant frequency of the FBARs is considered. Switchable and tuneable FBARs based on electric field induced piezoelectric effect in paraelectric phase ferroelectrics are covered. The resonance of these resonators may be electrically switched on and off and tuned without hysteresis. The book is aimed at microwave and sensor specialists in the industry and graduate students. Readers will learn about principles of operation and possibilities of the switchable and tuneable FBARs, and will be given general guidelines for designing, fabrication and applications of these devices.




Electroceramic-Based MEMS


Book Description

The book is focused on the use of functional oxide and nitride films to enlarge the application range of MEMS (microelectromechanical systems), including micro-sensors, micro-actuators, transducers, and electronic components for microwaves and optical communications systems. Applications, emerging applications, fabrication technology and functioning issues are presented and discussed. The book covers the following topics: Part A: Applications and devices with electroceramic-based MEMS: Chemical microsensors Microactuators based on thin films Micromachined ultrasonic transducers Thick-film piezoelectric and magnetostrictive devices Pyroelectric microsystems RF bulk acoustic wave resonators and filters High frequency tunable devices MEMS for optical functionality Part B: Materials, fabrication technology, and functionality: Ceramic thick films for MEMS Piezoelectric thin films for MEMS Materials and technology in thin films for tunable high frequency devices Permittivity, tunability and loss in ferroelectrics for reconfigurable high frequency electronics Microfabrication of piezoelectric MEMS Nano patterning methods for electroceramics Soft lithography emerging techniques The book is addressed to engineers, scientists and researchers of various disciplines, device engineers, materials engineers, chemists, physicists and microtechnologists who are working and/or interested in this fast growing and highly promising field. The publication of this book follows a Special Issue on electroceramic-based MEMS that was published in the Journal of Electroceramics at the beginning of 2004. The ten invited papers of that special issue were adapted by the authors into chapters of the present book and five additional chapters were added.




Handbook of Research on Software-Defined and Cognitive Radio Technologies for Dynamic Spectrum Management


Book Description

The inadequate use of wireless spectrum resources has recently motivated researchers and practitioners to look for new ways to improve resource efficiency. As a result, new cognitive radio technologies have been proposed as an effective solution. The Handbook of Research on Software-Defined and Cognitive Radio Technologies for Dynamic Spectrum Management examines the emerging technologies being used to overcome radio spectrum scarcity. Providing timely and comprehensive coverage on topics pertaining to channel estimation, spectrum sensing, communication security, frequency hopping, and smart antennas, this research work is essential for use by educators, industrialists, and graduate students, as well as academicians researching in the field.




Reviews in Plasmonics 2016


Book Description

Reviews in Plasmonics 2016, the third volume of the new book series from Springer, serves as a comprehensive collection of current trends and emerging hot topics in the field of Plasmonics and closely related disciplines. It summarizes the year’s progress in surface plasmon phenomena and its applications, with authoritative analytical reviews in sufficient detail to be attractive to professional researchers, yet also appealing to the wider audience of scientists in related disciplines of Plasmonics. Reviews in Plasmonics offers an essential source of reference material for any lab working in the Plasmonics field and related areas. All academics, bench scientists, and industry professionals wishing to take advantage of the latest and greatest in the continuously emerging field of Plasmonics will find it an invaluable resource.