Nanoparticles from the Gasphase


Book Description

Gasphase synthesis of nanoparticles and nanostructured materials offers high chemical purity and crystalline quality as well as scalability up to industrial quantities. It is therefore highly attractive for both basic and applied science. This book gives a broad and coherent overview of the complete production and value chain from nanoparticle formation to integration into products and devices. Written by experts in the field – with backgrounds in electrical engineering, experimental and theoretical physics, materials science, and chemical engineering – the book offers a deep insight into the fabrication, characterization and application of nanoparticles from the gasphase. The first part of the book, “Formation”, covers chemical and growth kinetics, in-situ diagnostics, numerical simulation, process development and material deposition. In the second section, the reader is introduced to the structure and dynamics that lead to functional nanoscale systems and materials. The third section, “Properties and Applications”, provides a detailed discussion of the optical, electronic, magnetic and chemical characteristics of nanostructures and demonstrates how these can be used in tailored materials and devices.




Nanomaterials in Liquid Crystals


Book Description

This book is a printed edition of the Special Issue "Nanomaterials in Liquid Crystals" that was published in Nanomaterials




Optical Properties of Metal Oxide Nanostructures


Book Description

This book highlights the optical properties of metal oxides at both the fundamental and applied level and their use in various applications. The book offers a basic understanding of the optical properties and related spectroscopic techniques essential for anyone interested in learning about metal oxide nanostructures. This is partly due to the fact that optical properties are closely associated with other properties and functionalities (e.g., electronic, magnetic, and thermal), which are of essential significance to many technological applications, such as optical data communications, imaging, lighting, and displays, life sciences, health care, security, and safety. The book also highlights the fundamentals and systematic developments in various optical techniques to achieve better characterization, cost-effective, user-friendly approaches, and most importantly, state-of-the-art developing methodologies for various scientific and technological applications. It provides an adequate understanding of the imposed limitations and highlights the prospects and challenges associated with optical analytical methods to achieve the desired performance in targeted applications.




Ferroic Materials: Synthesis and Applications


Book Description

Special topic volume with invited peer reviewed papers only.




Symmetry, Spin Dynamics and the Properties of Nanostructures - Lecture Notes of the 11th International School on Theoretical Physics


Book Description

"This book is a collection of lecture notes which were presented by invited speakers at the Eleventh School on Theoretical Physics "Symmetry and Structural Properties of Condensed Matter SSPCM 2014" in Rzeszów (Poland) in September 2014. The main challenge for the lecturers was the objective to present their subject as a review as well as in the form of introduction for beginners. Topics considered in the volume concentrate on: spin dynamics and spin transport in magnetic and non-magnetic structures, spin-orbit interaction in two-dimensional systems and graphene, and new mathematical method used in the condensed matter physics."--




Magnetoelectric Composites


Book Description

This book is dedicated to modeling and application of magnetoelectric (ME) effects in layered and bulk composites based on magnetostrictive and piezoelectric materials. Currently, numerous theoretical and experimental studies on ME composites are available but few on the development and research of instruments based on them. So far, only investigation of ME magnetic field sensors has been cited in the existing literature. However, these studies have finally resulted in the creation of low-frequency ME magnetic field sensors with parameters substantially exceeding the characteristics of Hall sensors. The book presents the authors’ many years of experience gained in ME composites and through creation of device models based on their studies. It describes low-frequency ME devices, such as current and position sensors and energy harvesters, and microwave ME devices, such as antennas, attenuators, filters, gyrators, and phase shifters.




Synthesis, Processing and Application of Micro and Nanostructured Materials


Book Description

The book is focused on nanostructured materials, which have been well-studied in various fields from life to materials sciences. Nanostructured science has the potential to help make revolutionary discoveries based on modifying the properties of these materials compared with micro-structured materials. Nanostructured materials are the key to discovering new products based on new technologies. This book is focused on presenting new state-of-the-art methods for the synthesis and processing of nanostructured materials. These materials can be used in both in life and materials science with applications from biomedical devices, drug delivery systems, medical imaging with multiferoic materials, high-energy batteries, capacitors, superconductors, and aerospace components.




Nanoscale Ferroelectrics and Multiferroics


Book Description

Dieses Buch beleuchtet die wichtigsten Aspekte der Verarbeitung und Charakterisierung von Ferroelektrika und Multiferroika auf Nanoebene, präsentiert eine umfassende Beschreibung der jeweiligen Eigenschaften und legt dabei den Schwerpunkt auf die Unterscheidung von Größeneffekten bei extrinsischen Eigenschaften wie Rand- oder Interface-Effekte. Eingegangen wird auch auf neuartige Nanoebene. Das Fachbuch ist in drei Abschnitte unterteilt und beschreibt die Verarbeitung (Nanostrukturierung), Charakterisierung (nanostrukturierter Materialien) und Nanoeffekte. Unter Rückgriff auf die Synergien zwischen Nano-Ferroelektrika und -Multiferroika werden Materialien behandelt, die auf allen Ebenen einer Nanostrukturierung unterzogen werden, von Technologien für keramische Materialien wie ferroelektrische Nanopulver, nanostrukturierte Keramiken und Dickschichten sowie magnetoelektrische Nanokomposit-Materialien bis hin zu freistehenden Nanoobjekten mit spezifischen Geometrien wie Nanodrähte und Nanoröhren auf verschiedenen Entwicklungsstufen. Grundlage des Buches ist die europäische Wissensplattform im Wissenschaftsbereich innerhalb der Aktion von COST (Europäische Zusammenarbeit in Wissenschaft und Technik) zu ein- und mehrphasigen Ferroika und Multiferroika mit begrenzten Geometrien (SIMUFER, Ref. MP0904). Die Autoren der Kapitelbeiträge wurden sorgfältig ausgewählt, haben allesamt ganz wesentlich zur Wissensbasis für das jeweilige Thema beigetragen und gehören vor allem zu den renommiertesten Wissenschaftlern des Fachgebiets.




Nanostructures in Ferroelectric Films for Energy Applications


Book Description

Nanostructures in Ferroelectric Films for Energy Applications: Grains, Domains, Interfaces and Engineering Methods presents methods of engineering nanostructures in ferroelectric films to improve their performance in energy harvesting and conversion and storage. Ferroelectric films, which have broad applications, including the emerging energy technology, usually consist of nanoscale inhomogeneities. For polycrystalline films, the size and distribution of nano-grains determines the macroscopic properties, especially the field-induced polarization response. For epitaxial films, the energy of internal long-range electric and elastic fields during their growth are minimized by formation of self-assembled nano-domains. This book is an accessible reference for both instructors in academia and R&D professionals.




Ferroic Materials for Smart Systems


Book Description

Presents state-of-the-art knowledge?from basic insights to applications?on ferroic materials-based devices This book covers the fundamental physics, fabrication methods, and applications of ferroic materials and covers bulk, thin films, and nanomaterials. It provides a thorough overview of smart materials and systems involving the interplays among the mechanical strain, electrical polarization, magnetization, as well as heat and light. Materials presented include ferroelectric, multiferroic, piezoelectric, electrostrictive, magnetostrictive, and shape memory materials as well as their composites. The book also introduces various sensor and transducer applications, such as ultrasonic transducers, surface acoustic wave devices, microwave devices, magneto-electric devices, infrared detectors and memories. Ferroic Materials for Smart Systems: Fabrication, Devices and Applications introduces advanced measurement and testing techniques in ferroelectrics, including FeRAM and ferroelectric tunnelling based resistive switching. It also looks at ferroelectricity in emerging materials, such as 2D materials and high-k gate dielectric material HfO2. Engineering considerations for device design and fabrication are examined, as well as applications for magnetostrictive devices. Multiferroics of materials possessing both ferromagnetic and ferroelectric orders is covered, along with ferroelastic materials represented by shape memory alloy and magnetic shape memory alloys. -Brings together physics, fabrication, and applications of ferroic materials in a coherent manner -Discusses recent advances in ferroic materials technology and applications -Covers dielectric, ferroelectric, pyroelectric and piezoelectric materials -Introduces electrostrictive materials and magnetostrictive materials -Examines shape memory alloys and magneto-shape-memory alloys -Introduces devices based on the integration of ferroelectric and ferromagnetic materials such as multiferroic memory device and ME coupling device for sensor applications Ferroic Materials for Smart Systems: Fabrication, Devices and Applications will appeal to a wide variety of researchers and developers in physics, materials science and engineering.