Fiber-Reinforced Composites - Recent Advances, New Perspectives and Applications


Book Description

Fiber-reinforced composites have been widely applied in different industrial areas. This book focuses on the recent advances, new perspectives, and applications of different fiber-reinforced composites, such, as ceramic-matrix composites, fiber-reinforced concrete, wood–plastic composites, and so on. The design, fabrication, and application of fiber-reinforced composites are related to the high mechanical properties and nondestructive damage monitoring techniques. The experimental and damage monitoring method can reveal the internal damage evolution process inside of the fiber-reinforced composites and improve the operation reliability and safety of the composites and components. The book can help composite researchers better understand the engineering application, mechanical behavior, and damage detection of fiber-reinforced composites.




Natural and Synthetic Fiber Reinforced Composites


Book Description

Natural and Synthetic Fiber Reinforced Composites Discover a comprehensive exploration of fiber reinforced polymers by an expert team of editors Fiber reinforced polymer (FRP) composites offer several unique properties that make them ideal for use in a wide range of industries, from automotive and aerospace to marine, construction, and co-industrial. In Natural and Synthetic Fiber Reinforced Composites: Synthesis, Properties and Applications, a distinguished team of mechanical engineers delivers a comprehensive overview of fiber reinforced composites. This edited volume includes thorough discussions of glass-, cotton-, and carbon-fiber reinforced materials, as well as the tribological properties and non-structural applications of synthetic fiber composites. Readers will also find practical explorations of the structural evolution, mechanical features, and future possibilities of fiber, textile, and nano-cementitious materials. The physical and chemical properties of cotton fiber-based composites are explored at length, as are the extraordinary mechanical, thermal, electrical, electronic, and field emission properties of carbon nanotubes. This singular book also includes: A thorough discussion of recent advancements in natural fiber reinforced polymer composites, their implications, and the opportunities that arise as a result A comprehensive exploration of the thermal behavior of natural fiber-based composites An insightful review of the literature on sisal fiber with polymer matrices A response to the growing research gap in the existing literature regarding natural fiber-based polymer composites and solutions to address it Perfect for scientists, engineers, professors, and students working in areas involving natural and synthetic reinforced polymers and composites, Natural and Synthetic Fiber Reinforced Composites: Synthesis, Properties and Applications offers a one-of-a-kind resource to help readers understand a critical and rapidly evolving technology.




Fiber Reinforced Composites


Book Description

Polymer-based fibre-reinforced composites FRC's have now come out as a major class of structural materials being used or regarded as substituent's for metals in several critical components in space, automotive and other industries (marine, and sports goods) owing to their low density, strength-weight ratio, and fatigue strength. FRC's have several commercial as well as industrial applications ranging from aircraft, space, automotive, sporting goods, marine, and infrastructure. The above-mentioned applications of FRC's clearly reveal that FRC's have the potential to be used in a broad range of different engineering fields with the added advantages of low density, and resistance to corrosion compared to conventional metallic and ceramic composites. However, for scientists/researchers/R&D's to fabricate FRC's with such potential there should be careful and precise design followed by suitable process development based on properties like mechanical, physical, and thermal that are unique to each application. Hence the last few decades have witnessed considerable research on fibre reinforced composites. Fibre Reinforced Composites: Constituents, Compatibility, Perspectives and Applications presents a widespread all-inclusive review on fibre-reinforced composites ranging from the different types of processing techniques to chemical modification of the fibre surface to enhance the interfacial adhesion between the matrix and fibre and the structure-property relationship. It illustrates how high value composites can be produced by efficient and sustainable processing methods by selecting different constituents [fibres and resins]. Researchers in academia working in composites and accompanying areas [materials characterisation] and industrial manufacturers who need information on composite constituents and how they relate to each other for a certain application will find the book extremely useful when they need to make decisions about materials selection for their products. - Focuses on the different types of FRC's that are currently available (e.g. from polymeric matrices to metallic and ceramic matrices, from carbon fibre to different types of natural fibres and from short to long fibre reinforced), their processing techniques, characterization of different properties, and how to improve the interfacial adhesion between an incompatible fibre and matrix and their applications - Looks at crisis areas such as how to incorporate incompatible fibres and matrices together (e.g. Non-polar polypropylene matrix is not compatible with that of polar natural fibres and hence suitable surface modifications are required to make them compatible with each other) along with low cost processing methods, low density and high strength - Uncovers clarifications to both elementary and practical problems related to the fabrication of FRCs - Schematic representations depicting the interaction between different fibre types and matrices will be provided in some chapters




Advanced Fibre-Reinforced Polymer (FRP) Composites for Structural Applications


Book Description

Advanced Fibre-reinforced Polymer (FRP) Composites for Structural Applications, Second Edition provides updates on new research that has been carried out on the use of FRP composites for structural applications. These include the further development of advanced FRP composites materials that achieve lighter and stronger FRP composites, how to enhance FRP integrated behavior through matrix modification, along with information on pretension treatments and intelligence technology. The development of new technology such as automated manufacturing and processing of fiber-reinforced polymer (FRP) composites have played a significant role in optimizing fabrication processing and matrix formation. In this new edition, all chapters have been brought fully up-to-date to take on the key aspects mentioned above. The book's chapters cover all areas relevant to advanced FRP composites, from the material itself, its manufacturing, properties, testing and applications in structural and civil engineering. Applications span from civil engineering, to buildings and the energy industry. - Covers all areas relevant to advanced FRP composites, from the material itself, its manufacturing, properties, testing and applications in structural engineering - Features new manufacturing techniques, such as automated fiber placement and 3D printing of composites - Includes various applications, such as prestressed-FRP, FRP made of short fibers, continuous structural health monitoring using advanced optical fiber Bragg grating (FBG), durability of FRP-strengthened structures, and the application of carbon nano-tubes or platelets for enhancing durability of FRP-bonded structures




Hybrid Fiber Composites


Book Description

Fiber-reinforced composites are exceptionally versatile materials whose properties can be tuned to exhibit a variety of favorable properties such as high tensile strength and resistance against wear or chemical and thermal influences. Consequently, these materials are widely used in various industrial fields such as the aircraft, marine, and automobile industry. After an overview of the general structures and properties of hybrid fiber composites, the book focuses on the manufacturing and processing of these materials and their mechanical performance, including the elucidation of failure mechanisms. A comprehensive chapter on the modeling of hybrid fiber composites from micromechanical properties to macro-scale material behavior is followed by a review of applications of these materials in structural engineering, packaging, and the automotive and aerospace industries.




Natural Fiber-Reinforced Composites


Book Description

Natural Fiber-Reinforced Composites In-depth overview of thermal analysis of natural fiber-reinforced composites In Natural Fiber-Reinforced Composites: Thermal Properties and Applications, a team of distinguished researchers has delivered a comprehensive overview of the thermal properties of natural fiber-reinforced polymer composites. The book brings together information currently dispersed throughout the scientific literature and offers viable and environmentally friendly alternatives to conventional composites. The book highlights the thermal analysis of natural fiber-reinforced composites with techniques such as Thermogravimetric Analysis, Dynamic Mechanical Analysis, Thermomechanical Analysis, Differential Scanning Calorimetry, etc. This book provides: A thorough review of the thermal characterization of natural fiber-based hybrid composites Detailed investigation of the thermal properties of polymer composites reinforced with various natural fibers such as flax fiber, pineapple leaf fiber, sisal, sugar palm, grass fiber and cane fiber Discussions on the thermal properties of hybrid natural fiber-reinforced composites with various thermosetting and thermoplastic polymers Influence of nanofillers on the thermal stability and thermal decomposition characteristics of the natural fiber-based hybrid composites Natural Fiber-Reinforced Composites: Thermal Properties and Applications is a must-read for materials scientists, polymer chemists, and professionals working in the industry. This book is ideal for readers seeking to make an informed decision regarding materials selection for applications involving thermal insulation and elevated temperature. The suitability of natural fiber-reinforced composites in the automotive, mechanical, and civil engineering sectors is highlig




Interfaces in Particle and Fibre Reinforced Composites


Book Description

Interfaces in Particle and Fibre-Reinforced Composites: From Macro- to Nanoscale addresses recent research findings on the particle-matrix interface at different length scales. The book's main focus is on the reinforcement of materials by particles that can result in a composite material of high stiffness and strength, but it also focuses on how the particle interacts with the (matrix) material, which may be a polymer, biological-based material, ceramic or conventional metal. The different types of particle reinforced composites are discussed, as is load transfer at the particle-matrix interface. Readers will learn how to select materials and about particle structure. Significant progress has been made in applying these approaches, thus making this book a timely piece on recent research findings on the particle-matrix interface at different length scales. - Features wide coverage, from polymer, to ceramics and metal-based particulate composites - Structured in a logical order to cover fundamental studies, computer simulations, experimental techniques and characterization




Recent Developments in the Field of Carbon Fibers


Book Description

Carbon fibres are lightweight, chemically stable materials with high mechanical strength, and have state-of-the-art applications in aerospace, marine, construction and automotive sectors. The demand for carbon fibre?based components is expected to grow dramatically with expanding opportunities for lightweight metals and composites. Although this field has achieved a high level of maturity, nanoscale developments in carbon fibres have seen dramatic improvements in the functions of conventional biomaterials and composites. This book reveals several new developments in the field to enhance characteristics of carbon fibres and their composites, novel applications for tissue engineering, biological scaffoldings and implants, recycling and reuse of end-of-life CFRP and manufacturing waste and other issues of concern in the field of carbon fibres.




Composites and Advanced Materials for Industrial Applications


Book Description

The design and study of materials is a pivotal component to new discoveries in the various fields of science and technology. By better understanding the components and structures of materials, researchers can increase their applications across different industries. Composites and Advanced Materials for Industrial Applications is a critical scholarly resource that examines recent advances in the field of application of composite materials. Featuring coverage on a broad range of topics such as nanocomposites, hybrid composites, and fabrication techniques, this book is a vital reference source for engineers, academics, researchers, students, professionals, and practitioners seeking current research on improvements in manufacturing processes and developments of new analytical and testing methods.




Agro-Wastes for Packaging Applications


Book Description

Food and agricultural waste is a huge global issue that has detrimental effects on society, the economy, and the environment. Plant leaves, stems, roots and peels (outer leaves and stems) are among the wastes and by-products from agriculture and the food business, along with residues from oil production, fruit and vegetable peels, and seeds. High concentrations of dietary fiber, phytochemicals, cellulose, and hemicellulose are typically found in these residues. As the next environmentally conscious step of waste valorization, research from recent years has demonstrated that employing organic ingredients/biodegradable fibers generated from waste and by-products in the food packaging business may be an efficient strategy to reduce the quantity of food waste and by-products. In recent years, there has been a lot of interest in finding alternative polymer materials as high-value novel packaging materials through the valorization of agricultural waste. Thus, utilizing agricultural wastes and by-products as raw materials for food packaging could help cut down on the amount of waste produced. Agro-Wastes for Packaging Applications provides an update on the strategies for valuing agricultural waste and how these might be used in packaging. It also includes recent research on these approaches and presents an innovative strategy for developing sustainable, green, and biodegradable packaging options. A detailed overview of the packaging application of valorized agricultural waste materials is discussed, and concept clarification is achieved using flowcharts and figures supported by the latest research investigations. These agricultural leftovers are abundant sources of polysaccharides, such as cellulose, hemicellulose, and lignin, which can be processed further utilizing various physicochemical techniques and other unconventional techniques to create nanocellulose fibers or crystals. The main goal of this book is to provide food experts and the general public with superior, environmentally friendly, sustainable packaging materials that can be used in place of plastic polymers. Key Features Contains abundant information on advanced valorization techniques for different types of agricultural wastes Provides information on possible applications of component/constituents obtained by the valorization Discusses the impact of the incorporation of these valorized components in different packaging systems Reviews the legal standards and future trends in the commercialization of these derived polymers in food packaging industries