Fibrewise Homotopy Theory


Book Description

Topology occupies a central position in modern mathematics, and the concept of the fibre bundle provides an appropriate framework for studying differential geometry. Fibrewise homotopy theory is a very large subject that has attracted a good deal of research in recent years. This book provides an overview of the subject as it stands at present.




Fibrewise Topology


Book Description

The aim of this book is to promote a fibrewise perspective, particularly in topology, which is central to modern mathematics. Already this view is standard in the theory of fibre bundles and therefore in such subjects as global analysis. It has a role to play also in general and equivariant topology. There are strong links with equivariant topology, a topic which has latterly been subject to great research activity. It is to be hoped that this book will provide a solid and invigorating foundation for the increasing research interest in fibrewise topology




Simplicial and Dendroidal Homotopy Theory


Book Description

This open access book offers a self-contained introduction to the homotopy theory of simplicial and dendroidal sets and spaces. These are essential for the study of categories, operads, and algebraic structure up to coherent homotopy. The dendroidal theory combines the combinatorics of trees with the theory of Quillen model categories. Dendroidal sets are a natural generalization of simplicial sets from the point of view of operads. In this book, the simplicial approach to higher category theory is generalized to a dendroidal approach to higher operad theory. This dendroidal theory of higher operads is carefully developed in this book. The book also provides an original account of the more established simplicial approach to infinity-categories, which is developed in parallel to the dendroidal theory to emphasize the similarities and differences. Simplicial and Dendroidal Homotopy Theory is a complete introduction, carefully written with the beginning researcher in mind and ideally suited for seminars and courses. It can also be used as a standalone introduction to simplicial homotopy theory and to the theory of infinity-categories, or a standalone introduction to the theory of Quillen model categories and Bousfield localization.




Simplicial Homotopy Theory


Book Description

Since the beginning of the modern era of algebraic topology, simplicial methods have been used systematically and effectively for both computation and basic theory. With the development of Quillen's concept of a closed model category and, in particular, a simplicial model category, this collection of methods has become the primary way to describe non-abelian homological algebra and to address homotopy-theoretical issues in a variety of fields, including algebraic K-theory. This book supplies a modern exposition of these ideas, emphasizing model category theoretical techniques. Discussed here are the homotopy theory of simplicial sets, and other basic topics such as simplicial groups, Postnikov towers, and bisimplicial sets. The more advanced material includes homotopy limits and colimits, localization with respect to a map and with respect to a homology theory, cosimplicial spaces, and homotopy coherence. Interspersed throughout are many results and ideas well-known to experts, but uncollected in the literature. Intended for second-year graduate students and beyond, this book introduces many of the basic tools of modern homotopy theory. An extensive background in topology is not assumed.




The Hilton Symposium 1993


Book Description

This volume presents a cross-section of new developments in algebraic topology. The main portion consists of survey articles suitable for advanced graduate students and professionals pursuing research in this area. A great variety of topics are covered, many of which are of interest to researchers working in other areas of mathematics. In addition, some of the articles cover topics in group theory and homological algebra.




The Geometric Hopf Invariant and Surgery Theory


Book Description

Written by leading experts in the field, this monograph provides homotopy theoretic foundations for surgery theory on higher-dimensional manifolds. Presenting classical ideas in a modern framework, the authors carefully highlight how their results relate to (and generalize) existing results in the literature. The central result of the book expresses algebraic surgery theory in terms of the geometric Hopf invariant, a construction in stable homotopy theory which captures the double points of immersions. Many illustrative examples and applications of the abstract results are included in the book, making it of wide interest to topologists. Serving as a valuable reference, this work is aimed at graduate students and researchers interested in understanding how the algebraic and geometric topology fit together in the surgery theory of manifolds. It is the only book providing such a wide-ranging historical approach to the Hopf invariant, double points and surgery theory, with many results old and new.




Homotopy Theory and Its Applications


Book Description

This book is the result of a conference held to examine developments in homotopy theory in honor of Samuel Gitler in July 1993 (Cocoyoc, Mexico). It includes several research papers and three expository papers on various topics in homotopy theory. The research papers discuss the following: BL application of homotopy theory to group theory BL fiber bundle theory BL homotopy theory The expository papers consider the following topics: BL the Atiyah-Jones conjecture (by C. Boyer) BL classifying spaces of finite groups (by J. Martino) BL instanton moduli spaces (by J. Milgram) Homotopy Theory and Its Applications offers a distinctive account of how homotopy theoretic methods can be applied to a variety of interesting problems.




Handbook of Algebraic Topology


Book Description

Algebraic topology (also known as homotopy theory) is a flourishing branch of modern mathematics. It is very much an international subject and this is reflected in the background of the 36 leading experts who have contributed to the Handbook. Written for the reader who already has a grounding in the subject, the volume consists of 27 expository surveys covering the most active areas of research. They provide the researcher with an up-to-date overview of this exciting branch of mathematics.




Fibrewise Homotopy Theory


Book Description




Algebraic Topology: New Trends in Localization and Periodicity


Book Description

Central to this collection of papers are new developments in the general theory of localization of spaces. This field has undergone tremendous change of late and is yielding new insight into the mysteries of classical homotopy theory. The present volume comprises the refereed articles submitted at the Conference on Algebraic Topology held in Sant Feliu de Guíxols, Spain, in June 1994. Several comprehensive articles on general localization clarify the basic tools and give a report on the state of the art in the subject matter. The text is therefore accessible not only to the professional mathematician but also to the advanced student.