Review of the New York City Watershed Protection Program


Book Description

New York City's municipal water supply system provides about 1 billion gallons of drinking water a day to over 8.5 million people in New York City and about 1 million people living in nearby Westchester, Putnam, Ulster, and Orange counties. The combined water supply system includes 19 reservoirs and three controlled lakes with a total storage capacity of approximately 580 billion gallons. The city's Watershed Protection Program is intended to maintain and enhance the high quality of these surface water sources. Review of the New York City Watershed Protection Program assesses the efficacy and future of New York City's watershed management activities. The report identifies program areas that may require future change or action, including continued efforts to address turbidity and responding to changes in reservoir water quality as a result of climate change.







Evaluation of Conservation Practices Effect on Water Quality Using the SWAT Model


Book Description

The deterioration of water quality due to human-driven alternations has an adverse effect on the environment. More than 50% of surveyed surface water bodies in the United States (US) are classified as impaired waters as per the Clean Water Act. The pollutants affecting the water quality in the US are classified as point and non-point sources. Pollutant mitigation strategies such as the selective implementation of best management practices (BMPs) based on the severity of the pollution could improve water quality by reducing the amounts of pollutants. Quantifying the efficiency of a specific management practice can be difficult for large watersheds. Complex hydrologic models are used to assess water quality and quantity at watershed scales. This study used a Soil and Water Assessment Tool (SWAT) that can simulate a longer time series for hydrologic and water quality assessments in the Yazoo River Watershed (YRW). This research aims to estimate streamflow, sediment, and nutrient load reductions by implementing various BMPs in the watershed. BMPs such as vegetative filter strips (VFS), riparian buffers, and cover crops were applied in this study. Results from these scenarios indicated that the combination of VFS and riparian buffers at the watershed scale had the highest reduction in sediment and nutrient loads. Correspondingly, a comparative analysis of BMP implementation at the field and watershed scale showed the variability in the reduction of streamflow, sediment, and nutrient loads. The results indicated that combining VFS and CC at the field scale watershed had a greater nutrient reduction than at the watershed scale. Likewise, this study investigated the soil-specific sediment load assessments for predominant soils in the YRW, which resulted in soil types of Alligator, Sharkey, and Memphis soils being highly erodible from the agricultural-dominant region. This study also included the effect of historical land use and land-cover (LULC) change on water quality. The analysis revealed that there was a significant decrease in pastureland and a simultaneous increase in forest and wetlands, which showed a decreasing trend in hydrologic and water quality outputs. Results from this study could be beneficial in decision-making for prescribing appropriate conservation practices




Biennial Report


Book Description




Opportunities to Improve the U.S. Geological Survey National Water Quality Assessment Program


Book Description

The U.S. Geological Survey (USGS) established the National Water Quality Assesment (NAWQA) program in 1985 to assess water quality conditions and trends in representative river basins and aquifers across the United States. With this report, the NRC's Water Science and Technology Board has provided advice to USGS regarding NAWQA five separate times as the program evolved from an unfunded concept to a mature and nationally-recognized program in 2002. This report assesses the program's development and representative accomplishments to date and makes recommendations on opportunities to improve NAWQA as it begins its second decade of nationwide monitoring.




Spatial and Temporal Trends in Water Quality in a Mixed-use Landscape


Book Description

The eutrophication of aquatic ecosystems is a growing water quality concern as it can promote the proliferation of harmful algal blooms that have severe environmental, health, and economic impacts. In United States alone, it is estimated that the combined costs of the impact of cultural eutrophication is $2.2 billion. Phosphorus (P) is considered the primary limiting nutrient for algae in freshwater systems, and agriculture is generally recognized as the dominant source of P from the landscape. However, much less is known about the role of urban nonpoint source (NPS) P losses, in part due to the variety of land uses within these areas (residential, industrial, commercial, etc.). Therefore, considering that there is a projected increase in urbanization and a global recognition to reduce nutrient enrichment, a greater understanding of the role of urban areas in P transport is required. Here, water quality changes were investigated in an urbanized portion of the Grand River watershed at two different spatial scales: along the mainstem of the 7th order Grand River and the headwater reaches of Laurel Creek. The Weighted Regression on Time, Discharge, and Season (WRTDS) method was used to quantify how much total phosphorus (TP) and total suspended solids (TSS, as fine sediment is the primary vector for the transport of P) was transported to each reach. The variability in mass loads and yields due to random fluctuations in discharge were removed through flow-normalization so that water quality trends due to landscape changes could be evaluated. Key source areas were then identified by comparing temporal and spatial trends in water quality to trends in landcover using aerial imagery and GIS landcover data. There were similar findings at the two scales considered; urban areas have the potential to exceed the TP and TSS yields observed in agricultural areas as substantial deterioration of water quality was observed during the initial phases of construction (i.e., land clearing). However, once construction was completed, the water quality impacts declined. Although elevated TSS and TP yields after urbanization eventually improve, stream flows may remain elevated and more variable than those observed in reference catchments. At the smaller scale, while there was a 40% increase in stream flow in the reference catchment over the study period, the streamflow in the urbanized catchment increased by over 700%. The observed increases in stream flow were likely attributable to increased runoff from impervious groundcover and resuspension of river sediment (originating from urban sources) at higher stream flows. Therefore, urban areas have the potential to convey large mass loads of TSS and TP, even after their concentrations decrease. Accordingly, BMPs that focus on reducing runoff may be beneficial in developed areas. This study also emphasized that land use must be viewed as dynamic when assessing its impact on water quality, as the changes in land use themselves can drive changes in water quality. This was especially important in an area like the studied region where land that was historically agricultural, which may have legacy stores of P, is disturbed and converted to urban land. Lastly, multiple spatial scales should be used to investigate the effects of land use on water quality. At smaller spatial scales, potentially confounding factors such as differences in geology, soils, slope/aspect, vegetation type, and hydroclimatic variability can be effectively controlled to identify the effects of land use on water quality. The observations that are made at smaller spatial scales can then be validated at larger spatial scales to ensure that observed trends and processes do not represent only localized phenomena, but rather larger watershed-scale effects that can inform water management controls and priorities. Lastly, this investigation underscores the need for a coordinated monitoring effort to maximize the utility of monitoring data in decision-making. It is critical that various jurisdictional levels of government and other stakeholders communicate objectives and coordinate monitoring efforts to take advantage of economies of scale, reduce redundancies, and collect data that can be integrated meaningfully to address monitoring objectives.







Risk Assessment as a Tool for Water Resources Decision-Making in Central Asia


Book Description

Water resources, both in terms of water quality and water quantity, are of critical importance in planning for sustainable development in Central Asia and the Caucasus, as well as in other parts of the world. This NATO Advanced Research Workshop (ARW), entitled "Risk Assessment as a Tool for Water Resources Decision-Making in Central Asia", was conducted on September 23-25, 2002 in Almaty, Kazakhstan. The ARW addressed methods and approaches by which risk assessment methodology that has been developed in the United States, Europe and elsewhere can be applied to environmental and water resource problems in Central Asia. The stated goals of the ARWwere: • to assess the existing state of knowledge in the context of potential applications of risk assessment tools to water resources and other environmental issues in Central Asia; • to identify research gaps and directions for future research in the area of water resources which may be addressed through the application of risk assessment tools; • to promote closer working relationships between the scientists and technical experts from Central Asia and the Caucasus, as well as the scientists and technical experts from the United States and Europe. Based on historical experiences of Central Asian scientists and their colleagues in other parts of the world, there is a demonstrated need in the region to provide education, training and technical assistance on environmental decision-making tools, including risk assessment.




Annual Report


Book Description