Field, Force, Energy and Momentum in Classical Electrodynamics (Revised Edition)


Book Description

The classical theory of electrodynamics is based on Maxwell's equations and the Lorentz law of force. This book begins with a detailed analysis of these equations, and proceeds to examine their far-reaching consequences. The traditional approach to electrodynamics treats the ‘microscopic’ equations of Maxwell as fundamental, with electric charge and electric current as the sole sources of the electric and magnetic fields. Subsequently, polarization and magnetization are introduced into Maxwell's equations to account for the observed behavior of material media. The augmented equations, known as Maxwell's ‘macroscopic’ equations, are considered useful for practical applications, but are also ultimately reducible to the more fundamental ‘microscopic’ equations. In contrast, this textbook treats Maxwell's ‘macroscopic’ equations as the foundation of classical electrodynamics, and treats electrical charge, electrical current, polarization, and magnetization as the basic constituents of material media. The laws that govern the distribution of electromagnetic energy and momentum in space-time are also introduced in an early chapter, then discussed in great detail in subsequent chapters. The text presents several examples that demonstrate the solution of Maxwell's equations in diverse situations, aiming to enhance the reader’s understanding of the flow of energy and momentum as well as the distribution of force and torque throughout the matter-field systems under consideration. This revised edition of Field, Force, Energy and Momentum in Classical Electrodynamics features revised chapters, some of which include expanded discussions of fundamental concepts or alternative derivations of important formulas. The new edition also features three additional chapters covering Maxwell’s equations in spherical coordinates (Chapter 10), the author’s recent discussion (and streamlined proof) of the Optical Theorem (Chapter 13), and the fascinating connections between electromagnetism and Einstein’s special theory of relativity (Chapter 15). A new appendix covers the SI system of units that has been used throughout the book. The book is a useful textbook for physics majors studying classical electrodynamics. It also serves as a reference for industry professionals and academic faculty in the fields of optics and advanced electronics.




Field, Force, Energy and Momentum in Classical Electrodynamics


Book Description

"The classical theory of electrodynamics is based on Maxwell's equations and the Lorentz law of force. This book begins with a detailed analysis of these equations, and proceeds to examine their far-reaching consequences. The traditional approach to electr"




The Classical Electromagnetic Field


Book Description

This excellent text covers a year's course. Topics include vectors D and H inside matter, conservation laws for energy, momentum, invariance, form invariance, covariance in special relativity, and more.




Electrodynamics and Classical Theory of Fields and Particles


Book Description

Comprehensive graduate-level text by a distinguished theoretical physicist reveals the classical underpinnings of modern quantum field theory. Topics include space-time, Lorentz transformations, conservation laws, equations of motion, Green’s functions, and more. 1964 edition.




Frontiers in Optics and Photonics


Book Description

This book provides a cutting-edge research overview on the latest developments in the field of Optics and Photonics. All chapters are authored by the pioneers in their field and will cover the developments in Quantum Photonics, Optical properties of 2D Materials, Optical Sensors, Organic Opto-electronics, Nanophotonics, Metamaterials, Plasmonics, Quantum Cascade lasers, LEDs, Biophotonics and biomedical photonics and spectroscopy.




Polarized Light and Optical Systems


Book Description

Polarized Light and Optical Systems presents polarization optics for undergraduate and graduate students in a way which makes classroom teaching relevant to current issues in optical engineering. This curriculum has been developed and refined for a decade and a half at the University of Arizona’s College of Optical Sciences. Polarized Light and Optical Systems provides a reference for the optical engineer and optical designer in issues related to building polarimeters, designing displays, and polarization critical optical systems. The central theme of Polarized Light and Optical Systems is a unifying treatment of polarization elements as optical elements and optical elements as polarization elements. Key Features Comprehensive presentation of Jones calculus and Mueller calculus with tables and derivations of the Jones and Mueller matrices for polarization elements and polarization effects Classroom-appropriate presentations of polarization of birefringent materials, thin films, stress birefringence, crystal polarizers, liquid crystals, and gratings Discussion of the many forms of polarimeters, their trade-offs, data reduction methods, and polarization artifacts Exposition of the polarization ray tracing calculus to integrate polarization with ray tracing Explanation of the sources of polarization aberrations in optical systems and the functional forms of these polarization aberrations Problem sets to build students’ problem-solving capabilities.




Advanced Classical Electromagnetism


Book Description

"This is a concise, beginning graduate-level textbook on classical electromagnetism, the branch of physics that describes the interaction of electric currents or fields and magnetic fields. Electromagnetism (also called electrodynamics) is one of the pillars of modern physics and, as such, of the modern physics curriculum, with courses on electromagnetism required at the undergraduate and graduate levels. These courses traditionally proceed in a quasi-historical fashion, starting from equations and laws that were first formulated in the eighteenth and nineteenth centuries and still form the foundations of our understanding of electromagnetism. However, as Robert Wald argues, teaching in this way can be imprecise and tends to promote outdated ways of thinking about the subject. This book rethinks how electromagnetism is presented at the graduate level, offering a corrective that aims to bring teaching up to date with our more modern understanding of the topic. The book begins by debunking four common misconceptions, or "myths," that can hinder a deep conceptual understanding of electromagnetism. Wald then proceeds through the major topics first-year grad courses (and textbooks) in electromagnetism typically cover, including electrostatics, dielectrics, magnetostatics, electrodynamics, geometric optics, special relativity, gauge theory, and point charge. Wald's aim throughout is to explain to students how to think about electromagnetism from a modern and mathematically precise perspective, formulating all the key conceptual ideas and results in the field clearly and concisely, while forgoing extensive collections of examples and applications. The book could be used as the basis for or as a supplement to a course, or for self-study by students seeking a deeper understanding than traditional courses and books offer"--




Classical Electrodynamics


Book Description

Classical Electrodynamics captures Schwinger's inimitable lecturing style, in which everything flows inexorably from what has gone before. Novel elements of the approach include the immediate inference of Maxwell's equations from Coulomb's law and (Galilean) relativity, the use of action and stationary principles, the central role of Green's functions both in statics and dynamics, and, throughout, the integration of mathematics and physics. Thus, physical problems in electrostatics are used to develop the properties of Bessel functions and spherical harmonics. The latter portion of the book is devoted to radiation, with rather complete treatments of synchrotron radiation and diffraction, and the formulation of the mode decomposition for waveguides and scattering. Consequently, the book provides the student with a thorough grounding in electrodynamics in particular, and in classical field theory in general, subjects with enormous practical applications, and which are essential prerequisites for the study of quantum field theory.An essential resource for both physicists and their students, the book includes a ?Reader's Guide,? which describes the major themes in each chapter, suggests a possible path through the book, and identifies topics for inclusion in, and exclusion from, a given course, depending on the instructor's preference. Carefully constructed problems complement the material of the text, and introduce new topics. The book should be of great value to all physicists, from first-year graduate students to senior researchers, and to all those interested in electrodynamics, field theory, and mathematical physics.The text for the graduate classical electrodynamics course was left unfinished upon Julian Schwinger's death in 1994, but was completed by his coauthors, who have brilliantly recreated the excitement of Schwinger's novel approach.




Classical Electromagnetic Theory


Book Description

In questions of science, the authority of a thousand is not worth the humble reasoning of a single individual. Galileo Galilei, physicist and astronomer (1564-1642) This book is a second edition of “Classical Electromagnetic Theory” which derived from a set of lecture notes compiled over a number of years of teaching elect- magnetic theory to fourth year physics and electrical engineering students. These students had a previous exposure to electricity and magnetism, and the material from the ?rst four and a half chapters was presented as a review. I believe that the book makes a reasonable transition between the many excellent elementary books such as Gri?th’s Introduction to Electrodynamics and the obviously graduate level books such as Jackson’s Classical Electrodynamics or Landau and Lifshitz’ Elect- dynamics of Continuous Media. If the students have had a previous exposure to Electromagnetictheory, allthematerialcanbereasonablycoveredintwosemesters. Neophytes should probable spend a semester on the ?rst four or ?ve chapters as well as, depending on their mathematical background, the Appendices B to F. For a shorter or more elementary course, the material on spherical waves, waveguides, and waves in anisotropic media may be omitted without loss of continuity.




Classical Electrodynamics


Book Description