Filter Synthesis Using Genesys S/Filter


Book Description

S/Filter includes tools beyond direct synthesis, including a wide variety of both exact and approximate equivalent network transforms, methods for selecting the most desirable out of potentially thousands of synthesized alternatives, and a transform history record that simplifies design attempts requiring iteration. Very few software programs are based on direct synthesis, and the additional features of S/Filter make it a uniquely effective tool for filter design. This resource presents a practical guide to using Genesys software for microwave and RF filter design and synthesis. The focus of the book is common filter design problems and how to use direct synthesis to solve those problems. This book covers the application of S/Filter features to solving important and common filter problems. Both lumped element and distributed filters are discussed, with extensions to dielectric and quartz crystal resonators.




Filter Design Solutions for RF systems


Book Description

This Special Issue focuses on the state-of-the-art results from the definition and design of filters for low- and high-frequency applications and systems. Different technologies and solutions are commonly adopted for filter definition, from electrical to electromechanical and mechanical solutions, from passive to active devices, and from hybrid to integrated designs. Aspects related to both theoretical and experimental research in filter design, CAD modeling and novel technologies and applications, as well as filter fabrication, characterization and testing, are covered. The proposed research articles deal with different topics as follows: Modeling, design and simulation of filters; Processes and fabrication technologies for filters; Automated characterization and test of filters; Voltage and current mode filters; Integrated and discrete filters; Passive and active filters; Variable filters, characterization and tunability.







High Frequency Techniques


Book Description

This textbook is an introduction to microwave engineering. The scope of this book extends from topics for a first course in electrical engineering, in which impedances are analyzed using complex numbers, through the introduction of transmission lines that are analyzed using the Smith Chart, and on to graduate level subjects, such as equivalent circuits for obstacles in hollow waveguides, analyzed using Green’s Functions. This book is a virtual encyclopedia of circuit design methods. Despite the complexity, topics are presented in a conversational manner for ease of comprehension. The book is not only an excellent text at the undergraduate and graduate levels, but is as well a detailed reference for the practicing engineer. Consider how well informed an engineer will be who has become familiar with these topics as treated in High Frequency Techniques: (in order of presentation) Brief history of wireless (radio) and the Morse code U.S. Radio Frequency Allocations Introduction to vectors AC analysis and why complex numbers and impedance are used Circuit and antenna reciprocity Decibel measure Maximum power transfer Skin effect Computer simulation and optimization of networks LC matching of one impedance to another Coupled Resonators Uniform transmission lines for propagation VSWR, return Loss and mismatch error The Telegrapher Equations (derived) Phase and Group Velocities The Impedance Transformation Equation for lines (derived) Fano's and Bode's matching limits The Smith Chart (derived) Slotted Line impedance measurement Constant Q circles on the Smith Chart Approximating a transmission line with lumped L's and C's ABCD, Z, Y and Scattering matrix analysis methods for circuits Statistical Design and Yield Analysis of products Electromagnetic Fields Gauss's Law Vector Dot Product, Divergence and Curl Static Potential and Gradient Ampere's Law and Vector Curl Maxwell's Equations and their visualization The Laplacian Rectangular, cylindrical and spherical coordinates Skin Effect The Wave Equation The Helmholtz Equations Plane Propagating Waves Rayleigh Fading Circular (elliptic) Polarization Poynting's Theorem EM fields on Transmission Lines Calculating the impedance of coaxial lines Calculating and visualizing the fields in waveguides Propagation constants and waveguide modes The Taylor Series Expansion Fourier Series and Green's Functions Higher order modes and how to suppress them Vector Potential and Retarded Potentials Wire and aperture antennas Radio propagation and path loss Electromagnetic computer simulation of structures Directional couplers The Rat Race Hybrid Even and Odd Mode Analysis applied to the backward wave coupler Network analyzer impedance and transmission measurements Two-port Scattering Parameters (s matrix) The Hybrid Ring coupler The Wilkinson power divider Filter design: Butterworth, Maximally flat & Tchebyscheff responses Filter Q Diplexer, Bandpass and Elliptic filters Richard's Transformation & Kuroda’s Identities Mumford's transmission line stub filters Transistor Amplifier Design: gain, biasing, stability, and conjugate matching Noise in systems, noise figure of an amplifier cascade Amplifier non-linearity, and spurious free dynamic range Statistical Design and Yield Analysis




RF Front-End: World Class Designs


Book Description

All the design and development inspiration and direction a harware engineer needs in one blockbuster book! Janine Love site editor for RF Design Line,columnist, and author has selected the very best RF design material from the Newnes portfolio and has compiled it into this volume. The result is a book covering the gamut of RF front end design from antenna and filter design fundamentals to optimized layout techniques with a strong pragmatic emphasis. In addition to specific design techniques and practices, this book also discusses various approaches to solving RF front end design problems and how to successfully apply theory to actual design tasks. The material has been selected for its timelessness as well as for its relevance to contemporary RF front end design issues.Contents:Chapter 1 Radio waves and propagationChapter 2 RF Front End DesignChapter 3 Radio Transmission FundamentalsChapter 4 Advanced ArchitecturesChapter 5 RF Power AmplifiersChapter 6 RF AmplifiersCHAPTER 7 Basics of PA DesignChapter 8 Power AmplifiersChapter 9 RF/IF CircuitsChapter 10 FiltersChapter 11 Transmission Lines and PCBs as FiltersChapter 12 Tuning and MatchingChapter 13 Impedance MatchingChapter 14 RF Power Linearization Techniques - Hand-picked content selected by Janine Love, RF DesignLine site editor and author - Proven best design practices for antennas, filters, and layout - Case histories and design examples get you off and running on your current project




RFIC and MMIC Design and Technology


Book Description

This book gives an in-depth account of GaAs, InP and SiGe, technologies and describes all the key techniques for the design of amplifiers, ranging from filters and data converters to image oscillators, mixers, switches, variable attenuators, phase shifters, integrated antennas and complete monolithic transceivers.




Automotive Antenna Design and Applications


Book Description

The steady evolution of wireless communication technologies continues to pave the way for the implementation of innovative services and devices in modern vehicles. These include analog and digital audio broadcasting radio, satellite radio, GPS, cell phones, and short range communication devices. Such applications require the use multiple antennas operating in different frequency ranges. Automotive Antenna Design and Applications thoroughly examines traditional and new advanced automotive antennas, including the principles, designs, and techniques used to reduce antenna dimensions without significant degradation of communication quality. The contents of this book are based on cutting-edge data collected from numerous technical papers, patents, and patent applications. It presents an overview of many commercially available automotive antennas and covers features that have become standard in automotive applications, such as printed-on car glass antennas, reduced-size helical antennas, multiband compact, printed-on dielectric and patch designs in a single package. Includes simulation examples of antenna parameters that significantly speed up the design process using software packages such as FEKO, NEC, IE3D, and Genesys Highlighting the practical aspects of antenna design, the authors present passive and active designs and describe the entire design process, including antenna simulation, prototype sample fabrication, and laboratory test measurements. The book also covers the production adjustments that can result from the demands of the real car environment. The presentation of numerous examples of passive and active automotive antennas greatly enhances this reference’s value to professionals, students, and anyone else working in the ever-evolving field of antenna design and application.




Microwave Power Amplifier Design with MMIC Modules


Book Description

Solid state power amplifiers (SSPA) are a critical part of many microwave systems. Designing SSPAs with monolithic microwave integrated circuits (MMIC) has boosted device performance to much higher levels focused on PA modules. This cutting-edge book offers engineers practical guidance in selecting the best power amplifier module for a particular application and interfacing the selected module with other power amplifier modules in the system. It also explains how to identify and mitigate peripheral issues concerning the PA modules, SSPAs, and microwave systems. This authoritative volume presents the critical techniques and underpinnings of SSPA design, enabling professionals to optimize device and system performance. Engineers gain the knowledge they need to evaluate the optimum topologies for the design of a chain of microwave devices, including power amplifiers. Additionally, the book addresses the interface between the microwave subsystems and the primary DC power, the control and monitoring circuits, and the thermal and EMI paths. Packed with 240 illustrations and over 430 equations, this detailed book provides the practical tools engineers need for their challenging projects in the field.




RF Circuit Design


Book Description

It's Back! New chapters, examples, and insights; all infused with the timeless concepts and theories that have helped RF engineers for the past 25 years!RF circuit design is now more important than ever as we find ourselves in an increasingly wireless world. Radio is the backbone of today's wireless industry with protocols such as Bluetooth, Wi-Fi, WiMax, and ZigBee. Most, if not all, mobile devices have an RF component and this book tells the reader how to design and integrate that component in a very practical fashion. This book has been updated to include today's integrated circuit (IC) and system-level design issues as well as keeping its classic "wire lead" material. Design Concepts and Tools Include•The Basics: Wires, Resistors, Capacitors, Inductors•Resonant Circuits: Resonance, Insertion Loss •Filter Design: High-pass, Bandpass, Band-rejection•Impedance Matching: The L Network, Smith Charts, Software Design Tools•Transistors: Materials, Y Parameters, S Parameters•Small Signal RF Amplifier: Transistor Biasing, Y Parameters, S Parameters•RF Power Amplifiers: Automatic Shutdown Circuitry , Broadband Transformers, Practical Winding Hints•RF Front-End: Architectures, Software-Defined Radios, ADC's Effects•RF Design Tools: Languages, Flow, ModelingCheck out this book's companion Web site at: http://www.elsevierdirect.com/companion.jsp?ISBN=9780750685184 for full-color Smith Charts and extra content! - Completely updated but still contains its classic timeless information - Two NEW chapters on RF Front-End Design and RF Design Tools - Not overly math intensive, perfect for the working RF and digital professional that need to build analog-RF-Wireless circuits




Microwave and RF Semiconductor Control Device Modeling


Book Description

This comprehensive new resource presents a detailed look at the modeling and simulation of microwave semiconductor control devices and circuits. Fundamental PIN, MOSFET, and MESFET nonlinear device modeling are discussed, including the analysis of transient and harmonic behavior. Considering various control circuit topologies, the book analyzes a wide range of models, from simple approximations, to sophisticated analytical approaches. Readers find clear examples that provide guidance in how to use specific modeling techniques for their challenging projects in the field. Numerous illustrations help practitioners better understand important device and circuit behavior, revealing the relationship between key parameters and results. This authoritative volume covers basic and complex mathematical models for the most common semiconductor control elements used in today’s microwave and RF circuits and systems.