Finite and Locally Finite Groups


Book Description

This volume contains the proceedings of the NATO Advanced Study Institute on Finite and Locally Finite Groups held in Istanbul, Turkey, 14-27 August 1994, at which there were about 90 participants from some 16 different countries. The ASI received generous financial support from the Scientific Affairs Division of NATO. INTRODUCTION A locally finite group is a group in which every finite set of elements is contained in a finite subgroup. The study of locally finite groups began with Schur's result that a periodic linear group is, in fact, locally finite. The simple locally finite groups are of particular interest. In view of the classification of the finite simple groups and advances in representation theory, it is natural to pursue classification theorems for simple locally finite groups. This was one of the central themes of the Istanbul conference and significant progress is reported herein. The theory of simple locally finite groups intersects many areas of group theory and representation theory, so this served as a focus for several articles in the volume. Every simple locally finite group has what is known as a Kegel cover. This is a collection of pairs {(G , Ni) liE I}, where I is an index set, each group Gi is finite, i Ni




Locally Finite Groups


Book Description

Locally Finite Groups




Skew Linear Groups


Book Description

This book is concerned with subgroups of groups of the form GL(n,D) for some division ring D. In it the authors bring together many of the advances in the theory of skew linear groups. Some aspects of skew linear groups are similar to those for linear groups, however there are often significant differences either in the method of proof or the results themselves. Topics covered in this volume include irreducibility, unipotence, locally finite-dimensional division algebras, and division algebras associated with polycyclic groups. Both authors are experts in this area of current interest in group theory, and algebraists and research students will find this an accessible account of the subject.




Self-Similar Groups


Book Description

Self-similar groups (groups generated by automata) initially appeared as examples of groups that are easy to define but have exotic properties like nontrivial torsion, intermediate growth, etc. This book studies the self-similarity phenomenon in group theory and shows its intimate relationship with dynamical systems and more classical self-similar structures, such as fractals, Julia sets, and self-affine tilings. This connection is established through the central topics of the book, which are the notions of the iterated monodromy group and limit space. A wide variety of examples and different applications of self-similar groups to dynamical systems and vice versa are discussed. In particular, it is shown that Julia sets can be reconstructed from the respective iterated monodromy groups and that groups with exotic properties can appear not just as isolated examples, but as naturally defined iterated monodromy groups of rational functions. The book offers important, new mathematics that will open new avenues of research in group theory and dynamical systems. It is intended to be accessible to a wide readership of professional mathematicians.




Characterising Locally Finite Groups Satisfying the Strong Sylow Theorem for the Prime p - Part 1 of a Trilogy


Book Description

Part 1 of the Trilogy "Characterising Locally Finite Groups Satisfying the Strong Sylow Theorem for the Prime p" & "About the Strong Sylow Theorem for the Prime p in Simple Locally Finite Groups" & "The Strong Sylow Theorem for the Prime p in Projective Special Linear Locally Finite Groups" is based on the beauteous BoD-Book "Characterising locally finite groups satisfying the strong Sylow Theorem for the prime p - Revised edition" (see ISBN 978-3-7562-3416-5) which in turn has been based on the author's research paper "Characterising Locally Finite Groups Satisfying the Strong Sylow Theorem for the Prime p" that was published on pp. 13-39 of Volume 13 of the gratifyingly open access mathematical journal Advances in Group Theory and Applications (AGTA) (see https://www.advgrouptheory.com/ journal/#read). Part 1 removes the highlights in light green of the Revised edition and adds the albeit considerably improved Pages i to vi, Pages 26a to 26f, and Pages xiii to xviii to the AGTA paper. In addition it adds the ten new Pages xv to xxiv to the Revised edition and thus renumbers the Pages xv to xviii into the Pages xxv to xxviii. It includes Reference [11] as Appendix 1 and Reference [10] as Appendix 2. Finally it calls to mind Prof. Otto H. Kegel's fine contribution to the conference Ischia Group Theory 2016.




Sylow Theory, Formations, and Fitting Classes in Locally Finite Groups


Book Description

This book is concerned with the generalizations of Sylow theorems and the related topics of formations and the fitting of classes to locally finite groups. It also contains details of Sunkov's and Belyaev'ss results on locally finite groups with min-p for all primes p. This is the first time many of these topics have appeared in book form. The body of work here is fairly complete.




Classes of Finite Groups


Book Description

This book covers the latest achievements of the Theory of Classes of Finite Groups. It introduces some unpublished and fundamental advances in this Theory and provides a new insight into some classic facts in this area. By gathering the research of many authors scattered in hundreds of papers the book contributes to the understanding of the structure of finite groups by adapting and extending the successful techniques of the Theory of Finite Soluble Groups.




A Course in the Theory of Groups


Book Description

" A group is defined by means of the laws of combinations of its symbols," according to a celebrated dictum of Cayley. And this is probably still as good a one-line explanation as any. The concept of a group is surely one of the central ideas of mathematics. Certainly there are a few branches of that science in which groups are not employed implicitly or explicitly. Nor is the use of groups confined to pure mathematics. Quantum theory, molecular and atomic structure, and crystallography are just a few of the areas of science in which the idea of a group as a measure of symmetry has played an important part. The theory of groups is the oldest branch of modern algebra. Its origins are to be found in the work of Joseph Louis Lagrange (1736-1813), Paulo Ruffini (1765-1822), and Evariste Galois (1811-1832) on the theory of algebraic equations. Their groups consisted of permutations of the variables or of the roots of polynomials, and indeed for much of the nineteenth century all groups were finite permutation groups. Nevertheless many of the fundamental ideas of group theory were introduced by these early workers and their successors, Augustin Louis Cauchy (1789-1857), Ludwig Sylow (1832-1918), Camille Jordan (1838-1922) among others. The concept of an abstract group is clearly recognizable in the work of Arthur Cayley (1821-1895) but it did not really win widespread acceptance until Walther von Dyck (1856-1934) introduced presentations of groups.




The Classification of the Finite Simple Groups, Number 3


Book Description

Examines the internal structure of the finite simple groups of Lie type, the finite alternating groups, and 26 sporadic finite simple groups, as well as their analogues. Emphasis is on the structure of local subgroups and their relationships with one another, rather than development of an abstract theory of simple groups. A foundation is laid for the development of specific properties of K-groups to be used in the inductive proof of the classification theorem. Highlights include statements and proofs of the Breol-Tits and Curtis-Tits theorems, and material on centralizers of semisimple involutions in groups of Lie type. For graduate students and research mathematicians. Annotation copyrighted by Book News, Inc., Portland, OR




Characterising Locally Finite Groups Satisfying the Strong Sylow Theorem for the Prime p - Part 1 of a Trilogy


Book Description

Part 1 of the Trilogy "Characterising Locally Finite Groups Satisfying the Strong Sylow Theorem for the Prime p" & "About the Strong Sylow Theorem for the Prime p in Simple Locally Finite Groups" & "The Strong Sylow Theorem for the Prime p in Projective Special Linear Locally Finite Groups" is based on the beauteous BoD-Book "Characterising locally finite groups satisfying the strong Sylow Theorem for the prime p - Revised edition" (see ISBN 978-3-7562-3416-5) which in turn has been based on the author's research paper "Characterising Locally Finite Groups Satisfying the Strong Sylow Theorem for the Prime p" that was published on pp. 13-39 of Volume 13 of the open access mathematical journal Advances in Group Theory and Applications (AGTA) (look at https://www.advgrouptheory.com/journal/#read). The First edition of Part 1 (see ISBN 978-3-7543-6087-3) removes the highlights in light green of the Revised edition and adds the albeit fairly considerably improved Pages i to vi and Pages 27 to 34 to the AGTA paper. In addition Part 1 adds the ten new Pages 35 to 44 to the Revised edition and therefore has to renumber the Pages xv to xviii into the Pages 45 to 48. It includes the Reference [11] as Appendix 1 and the Reference [10] as Appendix 2. Finally it calls to mind Professor Otto H. Kegel's fine contribution to the conference Ischia Group Theory 2016. The Second edition introduces a uniform page numbering, adds page numbers to the appendices, improves Pages iv and v, Page 22, Pages 26 to 34 and Pages 39, 45, 49, 50, 75, 76, 105 and 106, adds Pages 109 to 112, and adds a two-page Table of Contents of the Trilogy. For a review of the trilogy see [16].