Finite Element Simulation of Residual Stresses from Welding and High Frequency Hammer Peening


Book Description

Research goal of the present monograph is the establishment of an efficient engineering approach, which will include straightforward but accurate simulation models, in order to estimate the residual stress fields of welded joints introduced during welding and their post-weld treatment with High Frequency Hammer Peening. The present subject lies on the intersection of structural engineering, material science and computational mechanics.







Residual Stresses 2018


Book Description

The European Conference on Residual Stresses (ECRS) series is the leading European forum for scientific exchange on internal and residual stresses in materials. It addresses both academic and industrial experts and covers a broad gamut of stress-related topics from instrumentation via experimental and modelling methodology up to stress problems in specific processes such as welding or shot-peening, and their impact on materials properties. Chapters: Diffraction Methods; Mechanical Relaxation Methods; Acoustic and Electromagnetic Methods; Composites, Nano and Microstructures; Films, Coatings and Oxides; Cold Working and Machining; Heat Treatments and Phase Transformations; Welding, Fatigue and Fracture: Stresses in Additive Manufacturing.




Design of Cast Steel Components under Cyclic Loading


Book Description

This work presents a design approach that links fatigue resistance of cast steel component to permissible defect sizes. It is based on fractures mechanics, is in line with experiences of the last 60 years and validated by extensive experimental as well as numerical investigations on different scales and under consideration of real casting defects. By following established assessment methods, the design concept is adapted to practical building applications.




Residual Stress Analysis on Welded Joints by Means of Numerical Simulation and Experiments


Book Description

The ability to quantify residual stresses induced by welding processes through experimentation or numerical simulation has become, today more than ever, of strategic importance in the context of their application to advanced design. This is an ongoing challenge that commenced many years ago. Recent design criteria endeavour to quantify the effect of residual stresses on fatigue strength of welded joints to allow a more efficient use of materials and a greater reliability of welded structures. The aim of the present book is contributing to these aspects of design through a collection of case-studies that illustrate both standard and advanced experimental and numerical methodologies used to assess the residual stress field in welded joints. The work is intended to be of assistance to designers, industrial engineers and academics who want to deepen their knowledge of this challenging topic.




Residual Stresses 2016


Book Description

This book presents the proceedings of the International Conference on Residual Stresses 10 and is devoted to the prediction/modelling, evaluation, control, and application of residual stresses in engineering materials. New developments, on stress-measurement techniques, on modelling and prediction of residual stresses and on progress made in the fundamental understanding of the relation between the state of residual stress and the material properties, are highlighted. The proceedings offer an overview of the current understanding of the role of residual stresses in materials used in wide ranging application areas.




Chemical Abstracts


Book Description




IIW Recommendations On Methods for Improving the Fatigue Strength of Welded Joints


Book Description

The weld toe is a primary source of fatigue cracking because of the severity of the stress concentration it produces. Weld toe improvement can increase the fatigue strength of new structures significantly. It can also be used to repair or upgrade existing structures. However, in practice there have been wide variations in the actual improvements in fatigue strength achieved. Based on an extensive testing programme organised by the IIW, this report reviews the main methods for weld toe improvement to increase fatigue strength: burr grinding, TIG dressing and hammer and needle peening. The report provides specifications for the practical use of each method, including equipment, weld preparation and operation. It also offers guidance on inspection, quality control and training as well as assessments of fatigue strength and thickness effects possible with each technique. IIW recommendations on methods for improving the fatigue strength of welded joints will allow a more consistent use of these methods and more predictable increases in fatigue strength. Provides specifications for the practical use of each weld toe method, including equipment, weld preparation and operation Offers guidance on inspection, quality control and training, as well as assessments of fatigue strength and thickness effects possible with each technique This report will allow a more consistent use of these methods and more predictable increases in fatigue strength




Handbook of Residual Stress and Deformation of Steel


Book Description

Annotation Examines the factors that contribute to overall steel deformation problems. The 27 articles address the effect of materials and processing, the measurement and prediction of residual stress and distortion, and residual stress formation in the shaping of materials, during hardening processes, and during manufacturing processes. Some of the topics are the stability and relaxation behavior of macro and micro residual stresses, stress determination in coatings, the effects of process equipment design, the application of metallo- thermo-mechanic to quenching, inducing compressive stresses through controlled shot peening, and the origin and assessment of residual stresses during welding and brazing. Annotation c. Book News, Inc., Portland, OR (booknews.com)




IIW Recommendations for the HFMI Treatment


Book Description

This book of recommendations presents an overview of High Frequency Mechanical Impact (HFMI) techniques existing today in the market and their proper procedures, quality assurance measures and documentation. Due to differences in HFMI tools and the wide variety of potential applications, certain details of proper treatments and quantitative quality control measures are presented generally. An example of procedure specification as a quality assurance measure is given in the Appendix. Moreover, the book presents procedures for the fatigue life assessment of HFMI-improved welded joints based on nominal stress, structural hot spot stress and effective notch stress. It also considers the extra benefit that has been experimentally observed for HFMI-treated high-strength steels. The recommendations offer proposals on the effect of loading conditions like high mean stress fatigue cycles, variable amplitude loading and large amplitude/low cycle fatigue cycles. Special considerations for low stress concentration welded joints are also given. In order to demonstrate the use of the guideline, the book provides several fatigue assessment examples.