Finite Ordered Sets


Book Description

A comprehensive account that gives equal attention to the combinatorial, logical and applied aspects of partially ordered sets.




Ordered Sets


Book Description

An introduction to the basic tools of the theory of (partially) ordered sets such as visualization via diagrams, subsets, homomorphisms, important order-theoretical constructions and classes of ordered sets. Using a thematic approach, the author presents open or recently solved problems to motivate the development of constructions and investigations for new classes of ordered sets. The text can be used as a focused follow-up or companion to a first proof (set theory and relations) or graph theory course.




Abelian Groups and Representations of Finite Partially Ordered Sets


Book Description

The theme of this book is an exposition of connections between representations of finite partially ordered sets and abelian groups. Emphasis is placed throughout on classification, a description of the objects up to isomorphism, and computation of representation type, a measure of when classification is feasible. David M. Arnold is the Ralph and Jean Storm Professor of Mathematics at Baylor University. He is the author of "Finite Rank Torsion Free Abelian Groups and Rings" published in the Springer-Verlag Lecture Notes in Mathematics series, a co-editor for two volumes of conference proceedings, and the author of numerous articles in mathematical research journals.




Finite Ordered Sets


Book Description

Ordered sets are ubiquitous in mathematics and have significant applications in computer science, statistics, biology and the social sciences. As the first book to deal exclusively with finite ordered sets, this book will be welcomed by graduate students and researchers in all of these areas. Beginning with definitions of key concepts and fundamental results (Dilworth's and Sperner's theorem, interval and semiorders, Galois connection, duality with distributive lattices, coding and dimension theory), the authors then present applications of these structures in fields such as preference modelling and aggregation, operational research and management, cluster and concept analysis, and data mining. Exercises are included at the end of each chapter with helpful hints provided for some of the most difficult examples. The authors also point to further topics of ongoing research.




Finite and Infinite Combinatorics in Sets and Logic


Book Description

This volume contains the accounts of papers delivered at the Nato Advanced Study Institute on Finite and Infinite Combinatorics in Sets and Logic held at the Banff Centre, Alberta, Canada from April 21 to May 4, 1991. As the title suggests the meeting brought together workers interested in the interplay between finite and infinite combinatorics, set theory, graph theory and logic. It used to be that infinite set theory, finite combinatorics and logic could be viewed as quite separate and independent subjects. But more and more those disciplines grow together and become interdependent of each other with ever more problems and results appearing which concern all of those disciplines. I appreciate the financial support which was provided by the N. A. T. O. Advanced Study Institute programme, the Natural Sciences and Engineering Research Council of Canada and the Department of Mathematics and Statistics of the University of Calgary. 11l'te meeting on Finite and Infinite Combinatorics in Sets and Logic followed two other meetings on discrete mathematics held in Banff, the Symposium on Ordered Sets in 1981 and the Symposium on Graphs and Order in 1984. The growing inter-relation between the different areas in discrete mathematics is maybe best illustrated by the fact that many of the participants who were present at the previous meetings also attended this meeting on Finite and Infinite Combinatorics in Sets and Logic.




Combinatorics of Finite Sets


Book Description

Among other subjects explored are the Clements-Lindström extension of the Kruskal-Katona theorem to multisets and the Greene-Kleitmen result concerning k-saturated chain partitions of general partially ordered sets. Includes exercises and solutions.




Extremal Finite Set Theory


Book Description

Extremal Finite Set Theory surveys old and new results in the area of extremal set system theory. It presents an overview of the main techniques and tools (shifting, the cycle method, profile polytopes, incidence matrices, flag algebras, etc.) used in the different subtopics. The book focuses on the cardinality of a family of sets satisfying certain combinatorial properties. It covers recent progress in the subject of set systems and extremal combinatorics. Intended for graduate students, instructors teaching extremal combinatorics and researchers, this book serves as a sound introduction to the theory of extremal set systems. In each of the topics covered, the text introduces the basic tools used in the literature. Every chapter provides detailed proofs of the most important results and some of the most recent ones, while the proofs of some other theorems are posted as exercises with hints. Features: Presents the most basic theorems on extremal set systems Includes many proof techniques Contains recent developments The book’s contents are well suited to form the syllabus for an introductory course About the Authors: Dániel Gerbner is a researcher at the Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences in Budapest, Hungary. He holds a Ph.D. from Eötvös Loránd University, Hungary and has contributed to numerous publications. His research interests are in extremal combinatorics and search theory. Balázs Patkós is also a researcher at the Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences. He holds a Ph.D. from Central European University, Budapest and has authored several research papers. His research interests are in extremal and probabilistic combinatorics.




Ordered Sets


Book Description

This volume contains all twenty-three of the principal survey papers presented at the Symposium on Ordered Sets held at Banff, Canada from August 28 to September 12, 1981. The Symposium was supported by grants from the NATO Advanced Study Institute programme, the Natural Sciences and Engineering Research Council of Canada, the Canadian Mathematical Society Summer Research Institute programme, and the University of Calgary. tve are very grateful to these Organizations for their considerable interest and support. Over forty years ago on April 15, 1938 the first Symposium on Lattice Theory was held in Charlottesville, U.S.A. in conjunction with a meeting of the American Mathematical Society. The principal addresses on that occasion were Lattices and their applications by G. Birkhoff, On the application of structure theory to groups by O. Ore, and The representation of Boolean algebras by M. H. Stone. The texts of these addresses and three others by R. Baer, H. M. MacNeille, and K. Menger appear in the Bulletin of the American Mathematical Society, Volume 44, 1938. In those days the theory of ordered sets, and especially lattice theory was described as a "vigorous and promising younger brother of group theory." Some early workers hoped that lattice theoretic methods would lead to solutions of important problems in group theory.




The Axiom of Choice


Book Description

Comprehensive and self-contained text examines the axiom's relative strengths and consequences, including its consistency and independence, relation to permutation models, and examples and counterexamples of its use. 1973 edition.