Finite Physical Dimensions Optimal Thermodynamics 2


Book Description

Finite Physical Dimensions Optimal Thermodynamics: Complex Systems is the result of 30 years of teaching and research in the field of thermodynamics of systems and processes. It starts from FTT during the seventies (and P Chambadal approach in France), but also includes the equilibrium thermodynamics from Carnot and TPIL from Onsager. The book shows that thermodynamics proposes more realistic results than those obtained from equilibrium thermodynamics. Focusing on a multidisciplinary approach that characterizes thermodynamics, particularly the connection between transfer phenomena and conversion of energy, the book is ideal for those in industry. Presents a synthesis of years of teaching and research on the topic Proposes a view of the evolution of knowledge regarding the thermodynamics modeling of systems and processes Starts from FTT during the seventies (and P Chambadal approach in France), but also includes the equilibrium thermodynamics from Carnot and TPIL from Onsager




Finite Physical Dimensions Optimal Thermodynamics 1


Book Description

Energy and the environment are inextricably linked to the economy. Thermodynamics therefore seems to be a privileged tool in overcoming the constraints associated with optimization.This first volume reports on an original, contemporary approach leading to optimal solutions in the form of trend models, proving the existence of solutions which can then be refined in a more complete and sophisticated manner.The validation of the proposed methodology is realized through real-life examples (engines, heat pumps, refrigeration systems, etc.). However, the more fundamental aspects linked to the dynamics of the transfer and conversion of energy and matter are also explored, as well as the evolution which characterizes the second law of thermodynamics.This book presents recent advances, often still undergoing research, as well as structured exercises, and is therefore aimed at both students and researchers in the field of energetics. It proposes a view of the evolution of knowledge regarding the thermodynamics modeling of systems and processes It shows results and also the existence of optimum all and along the development It focuses on multidisciplinary approach that characterizes thermodynamics




Advances in Thermodynamics and Circular Thermoeconomics


Book Description

This book on energy physics and energy efficiency discusses two essential components of energy physics: the fundamentals and the criteria. It covers the historical basis of Carnot models, the thermostatic cycles of double-function heat pumps and the optimization of thermomechanical engines, and discusses the results of various investigations, bringing together a number of previous works. The latter half of this book introduces the concept of "Circular Thermoeconomics" and assesses the physical costs of recycling waste in increasingly complex industrial processes. It then goes on to present "Relative Free Energy", allowing us to create a new mathematical theory of thermodynamic costs in order to diagnose malfunctions in thermal systems. The book shows the progression of knowledge on the existence of successive energy, power and efficiency, and pairs this with the economic aspects, which are already becoming linked to growing environmental concerns.




Carnot Cycle and Heat Engine Fundamentals and Applications


Book Description

This book results from a Special Issue related to the latest progress in the thermodynamics of machines systems and processes since the premonitory work of Carnot. Carnot invented his famous cycle and generalized the efficiency concept for thermo-mechanical engines. Since that time, research progressed from the equilibrium approach to the irreversible situation that represents the general case. This book illustrates the present state-of-the-art advances after one or two centuries of consideration regarding applications and fundamental aspects. The research is moving fast in the direction of economic and environmental aspects. This will probably continue during the coming years. This book mainly highlights the recent focus on the maximum power of engines, as well as the corresponding first law efficiency upper bounds.




Hierarchical Gas-Gas Systems


Book Description

This book presents a thermodynamic and economic analysis of gas-gas systems in power plants, including combined heat and power systems, combined cooling, heat and power systems, hydrogen production facilities and compressed energy storage system. A configuration for high-temperature gas-cooled nuclear reactor is also used as a heat source for the cycle. The book compares different technologies, such as gas-steam and gas-gas systems, using optimized cases. It presents mathematical models that return optimal thermodynamic parameters of the cycles, and applies a novel continuous-time model in order to perform an economic analysis as well. This book utilizes numerous illustrations and worked examples to thoroughly explain the technologies discussed, making it relevant for researchers, market analysts, decision makers, power engineers and students alike.




Thermal System Optimization


Book Description

This book presents a wide-ranging review of the latest research and development directions in thermal systems optimization using population-based metaheuristic methods. It helps readers to identify the best methods for their own systems, providing details of mathematical models and algorithms suitable for implementation. To reduce mathematical complexity, the authors focus on optimization of individual components rather than taking on systems as a whole. They employ numerous case studies: heat exchangers; cooling towers; power generators; refrigeration systems; and others. The importance of these subsystems to real-world situations from internal combustion to air-conditioning is made clear. The thermal systems under discussion are analysed using various metaheuristic techniques, with comparative results for different systems. The inclusion of detailed MATLAB® codes in the text will assist readers—researchers, practitioners or students—to assess these techniques for different real-world systems. Thermal System Optimization is a useful tool for thermal design researchers and engineers in academia and industry, wishing to perform thermal system identification with properly optimized parameters. It will be of interest for researchers, practitioners and graduate students with backgrounds in mechanical, chemical and power engineering.




New Frontiers in Sustainable Aviation


Book Description

This book examines recent progress and new technological developments in sustainable aviation. It covers alternative fuel types, propulsion technologies, and aerial vehicle (unmanned aerial vehicles, drones, passenger air) emission reduction technologies. The effects of these technologies on vehicle performance, cost, and environmental impact are discussed, and case studies, practical applications, and engineering solutions and methodologies are provided. This collection will be an invaluable reference for researchers, practicing engineers, and students.







Thermodynamics II Essentials


Book Description

REA’s Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Thermodynamics II includes review of thermodynamic relations, power and refrigeration cycles, mixtures and solutions, chemical reactions, chemical equilibrium, and flow through nozzles and blade passages.




Exactly Soluble Models In Statistical Mechanics - Historical Perspectives And Current Status


Book Description

This volume contains the proceedings of the conference on 'Exactly Soluble Models in Statistical Mechanics: Historical Perspectives and Current Status', held at Northeastern University in March 1996 — the first ever conference to deal exclusively with this topic. Besides invited presentations by leading researchers in the field, the conference held a session of contributed papers by participants from throughout the world. The proceedings, which include both the invited and the contributed papers, reflect the broad range of interest in exactly soluble models as well as the diverse fields in physics and mathematics that they connect. Apart from providing concise and timely reviews, the papers in this volume give a snapshot of the current state of affairs. The topics covered range from a historical survey of the field (by E H Lieb) to the latest formulation of a star-star transformation of spin models (by R J Baxter).