Trends In Welding Research


Book Description




The Theory of Laser Materials Processing


Book Description

The revised edition of this important reference volume presents an expanded overview of the analytical and numerical approaches employed when exploring and developing modern laser materials processing techniques. The book shows how general principles can be used to obtain insight into laser processes, whether derived from fundamental physical theory or from direct observation of experimental results. The book gives readers an understanding of the strengths and limitations of simple numerical and analytical models that can then be used as the starting-point for more elaborate models of specific practical, theoretical or commercial value. Following an introduction to the mathematical formulation of some relevant classes of physical ideas, the core of the book consists of chapters addressing key applications in detail: cutting, keyhole welding, drilling, arc and hybrid laser-arc welding, hardening, cladding and forming. The second edition includes a new a chapter on glass cutting with lasers, as employed in the display industry. A further addition is a chapter on meta-modelling, whose purpose is to construct fast, simple and reliable models based on appropriate sources of information. It then makes it easy to explore data visually and is a convenient interactive tool for scientists to improve the quality of their models and for developers when designing their processes. As in the first edition, the book ends with an updated introduction to comprehensive numerical simulation. Although the book focuses on laser interactions with materials, many of the principles and methods explored can be applied to thermal modelling in a variety of different fields and at different power levels. It is aimed principally however at academic and industrial researchers and developers in the field of laser technology.




Proceedings of the 37th International MATADOR Conference


Book Description

Presented here are 97 refereed papers given at the 37th MATADOR Conference held at The University of Manchester in July 2012. The MATADOR series of conferences covers the topics of Manufacturing Automation and Systems Technology, Applications, Design, Organisation and Management, and Research. The Proceedings of this Conference contain original papers contributed by researchers from many countries on different continents. The papers cover the principles, techniques and applications in aerospace, automotive, biomedical, energy, consumable goods and process industries. The papers in this volume reflect: the importance of manufacturing to international wealth creation; the emerging fields of micro- and nano-manufacture; the increasing trend towards the fabrication of parts using lasers; the growing demand for precision engineering and part inspection techniques, and the changing trends in manufacturing within a global environment.




Laser Processing of Engineering Materials


Book Description

The complete guide to understanding and using lasers in material processing!Lasers are now an integral part of modern society, providing extraordinary opportunities for innovation in an ever-widening range of material processing and manufacturing applications. The study of laser material processing is a core element of many materials and manufacturing courses at undergraduate and postgraduate level. As a consequence, there is now a vast amount of research on the theory and application of lasers to be absorbed by students, industrial researchers, practising engineers and production managers. Written by an acknowledged expert in the field with over twenty years' experience in laser processing, John Ion distils cutting-edge information and research into a single key text. Essential for anyone studying or working with lasers, Laser Processing of Engineering Materials provides a clear explanation of the underlying principles, including physics, chemistry and materials science, along with a framework of available laser processes and their distinguishing features and variables. This book delivers the knowledge needed to understand and apply lasers to the processing of engineering materials, and is highly recommended as a valuable guide to this revolutionary manufacturing technology. The first single volume text that treats this core engineering subject in a systematic manner Covers the principles, practice and application of lasers in all contemporary industrial processes; packed with examples, materials data and analysis, and modelling techniques




Coated and Laminated Textiles for Aerostats and Airships


Book Description

This book covers material challenges and technology innovation in coated and laminated textiles for aerostats and airships. Aerostats/airships are lighter-than-air (LTA) aircraft which are generally used in defence applications and face many harsh environmental conditions. For sustaining such conditions, there are special requirements for the material to be used in aerostats/airships which generally include a multi-layered coated/laminated textile using a textile fabric in base layer and different polymers for coating/lamination. Therefore, this book covers typical materials developed by different countries, challenges for developing material for aerostat/airship envelope and the future scope. Features: Exclusive title on materials used for LTA envelopes. Discusses material challenges such as selection of suitable fibre, polymer, additive, coating/lamination techniques, joint type and sealing techniques. Includes typical materials developed by different companies and researchers worldwide. Clearly explains technical concepts using figures, schemes and tabulated data. Includes case studies on material developed for aerostats/airships by different countries including NASA, Lockheed Martin, JAXA, ADRDE and DRDO. This book is aimed at graduate students, researchers and professionals in textiles engineering and aerospace engineering.




Advanced Joining Technologies


Book Description

This book covers advances in fusion and solid-state welding processes including basics, welding metallurgy, defect formation, and the effect of process parameters on mechanical properties. Details of the microstructural and mechanical behaviors of weldments are included. This book covers challenges encountered during dissimilar welding of metal by fusion and solid-state welding processes, including remedial solutions and hybrid processes to counter the same. Numerical and statistical simulation approaches used in the welding process for parameter optimization and material flow studies are described as well. Features: Provides details related to the microstructural and mechanical behaviors of welded joints developed by different welding processes. Covers recent research content, metallurgical analysis, and simulation aspects. Discusses the joining of plastics and ceramics. Includes a dedicated chapter on machine learning and digital twin in welding. Explores difficulties associated with the joining of dissimilar metals and alloys. This book is aimed at researchers and graduate students in material joining and characterization and welding.




Gcmm 2004


Book Description

Presents research and case studies from over 200 Manufacturing Professionals across the globe in the area of: Manufacturing Process; Materials; Metrology; Finite Element Methods; Industrial Engineering; Optimization; Quality; and Supply Chain Management.




Hybrid Laser-Arc Welding


Book Description

Hybrid laser-arc welding (HLAW) is a combination of laser welding with arc welding that overcomes many of the shortfalls of both processes. This important book gives a comprehensive account of hybrid laser-arc welding technology and applications.The first part of the book reviews the characteristics of the process, including the properties of joints produced by hybrid laser-arc welding and ways of assessing weld quality. Part two discusses applications of the process to such metals as magnesium alloys, aluminium and steel as well as the use of hybrid laser-arc welding in such sectors as ship building and the automotive industry.With its distinguished editor and international team of contributors, Hybrid laser-arc welding is a valuable source of reference for all those using this important welding technology. - Reviews arc and laser welding including both advantages and disadvantages of the hybrid laser-arc approach - Explores the characteristics of the process including the properties of joints produced by hybrid laser-arc welding and ways of assessing weld quality - Examines applications of the process including magnesium alloys, aluminium and steel with specific focus on applications in the shipbuilding and automotive industries




Handbook of Laser-Based Sustainable Surface Modification and Manufacturing Techniques


Book Description

This handbook provides an insight into the advancements in surface engineering methods, addressing the microstructural features, properties, mechanisms of surface degradation failures, and tribological performance of the components. Emphasis is placed on the use of laser cladding methods because they make it simple to deposit new classes of materials such nano-composites, nanotubes, and smart materials. Handbook of Laser-Based Sustainable Surface Modification and Manufacturing Techniques discusses the main mechanism behind the surface degradation of structural components in strenuous environments. It highlights the capacity of laser cladding to operate on a wide range of substrate materials and shapes as well as presents how laser cladding can offer new possibilities in the reconditioning of components and how, in many cases, these approaches are the only solution for economic efficiency. The handbook illustrates how the type of laser, laser optics, and the parameters of the process can be efficiently selected, and thus the number of applications of laser cladding and its applications can be increased. The standard methods of testing used for various types of biomedical devices and tools, as well as the advantages of combining laser cladding with simultaneous induction heating, are described as well within this handbook. Features: Discusses the role of claddings fabricated with laser technique to withstand wear and corrosion Highlights the role of laser in the manufacturing of alloys and recent advancements in laser based additive manufacturing processes Presents the possibilities, applications and challenges in laser surfacing Illustrates the post-treatments of powders and coatings and case studies related to laser surface technology Offers the standard methods of testing applied to various types of biomedical devices and tools Goes over the advantages of combining laser cladding with simultaneous induction heating The technical outcomes of these surface engineering methods are helpful for academics, students, and professionals who are working in this field, as this enlightens their understanding of the performance of these latest processes. The audience is broad and multidisciplinary.