A Gallery of Combustion and Fire


Book Description

A Gallery of Combustion and Fire is the first book to provide a graphical perspective of the extremely visual phenomenon of combustion in full color. It is designed primarily to be used in parallel with, and supplement existing combustion textbooks that are usually in black and white, making it a challenge to visualize such a graphic phenomenon. Each image includes a description of how it was generated, which is detailed enough for the expert but simple enough for the novice. Processes range from small scale academic flames up to full scale industrial flames under a wide range of conditions such as low and normal gravity, atmospheric to high pressures, actual and simulated flames, and controlled and uncontrolled flames. Containing over 500 color images, with over 230 contributors from over 75 organizations, this volume is a valuable asset for experts and novices alike.




Flame Structure and Processes


Book Description

Documents the numerous experimental techniques used to study flame microstructure, and provides an interdisciplinary overview of how such research is revealing exciting new information about combustion and high temperature processes.







Nonsteady Flame Propagation


Book Description

Nonsteady Flame Propagation provides information pertinent to flame propagation in gaseous media. This book focuses on linearized treatments and the comparison of their results with experimental observations. Organized into nine chapters, this book begins with an overview of the challenge of nonlinear problems and examines the essentially nonlinear character of the flame phenomena, which has been artificially suppressed in analyses by the use of linearized perturbation treatments. This text then summarizes the development regarding rocket-shaped burners. Other chapters consider the advantages as well as the limitations of linearized analyses. This book discusses as well a general treatment of the discontinuous-flame-front model and summarizes the results of studies of burner that use secondary air. The final chapter deals with re-examining the possibilities of using pulsating combustion in propulsion or in other applications. This book is a valuable resource for chemical engineers, chemists, scientists, and research workers.




Progress in Scale Modeling


Book Description

Scale modeling can play an important role in R&D. When engineers receive some ideas in new product development, they can test how the new design looks by bui- ing scale models and they can get an actual feeling with the prototype through their imagination. Professor Emori often said: “When children play with a toy airplane, their mind is wondering about the prototype airplane which they haven’t ridden. ” Children can use the scale model airplane as a means to enter into an imagi- tive world of wonder by testing in their own way how the actual airplane might function, how the actual airplane can maneuver aerodynamically, what might be the actual sound of a jet engine, how to safely land the actual airplane, and so on. This imagination that scale models can provide for children will help them later develop professional intuition. Physical scale models can never be entirely succe- fully replaced by computer screens where virtual models are displayed and fancy functions are demonstrated. Not only children but also adults can learn things by actually touching things only offered by physical models, helping all of us develop imagination and feeling eventually leading toward Kufu. Einstein’s famous “thought experiments [11],” which helped him to restructure modern physics may possibly and effectively be taught by letting researchers play with scale models!? References 1. I. Emori, K. Saito, and K. Sekimoto, Mokei Jikken no Riron to Ouyou (Scale Models in Engineering: Its Theory and Application), Gihodo, Tokyo, Third Edition, 2000.




Dust Explosion and Fire Prevention Handbook


Book Description

Up-to-date and thorough coverage of the causes, repercussions, and prevention of dust explosions and fires by one of the most well-respected environmental scientists and worker safety litigation specialists in the world This handy volume is a ready “go to” reference for the chemical engineer, plant manager, process engineer, or chemist working in industrial settings where dust explosions could be a concern, such as the process industries, coal industry, metal industry, and others. Though dust explosions have been around since the Earth first formed, and they have been studied and written about since the 1500s, they are still an ongoing concern and occur almost daily somewhere in the world, from bakeries to fertilizer plants. Dust explosions can have devastating consequences, and, recently, there have been new industrial standards and guidelines that reflect safer, more reasonable methods for dealing with materials to prevent dust explosions and resultant fires. This book not only presents these new developments for engineers and managers, it offers in-depth coverage of the subject, starting with a complete overview of dust—how it forms, when it is in danger of exploding, and how this risk can be mitigated—as well as a general overview of explosions and the environments that foster them. Dust Explosion and Fire Prevention Handbook covers individual industries, such as metal and coal; offers an appendix that outlines best practices for preventing dust explosions and fire and how these risks can be systematically mitigated by these implementations; and incorporates a handy glossary of terms for easy access, not only for the veteran engineer or chemist, but for the student or new hire. This ready reference is one of the most useful texts that an engineer or chemist could have at their side. With so many accidents still occurring in industry today, this must-have volume pinpoints the most common, sure-fire ways for engineers, scientists, and chemists working with these hazardous materials to go about their daily business safely, efficiently, and profitably, with no extraneous tables or theoretical treatises.




Flame and Combustion


Book Description

An introduction for postgraduate and undergraduate students to the chemical and physical principles of flame and combustion phenomena. This book should be of interest to undergraduate/postgraduate chemists; chemical engineers; undergraduate/postgraduate mechanical engineers and environmental scientists; and industrial combustion technologists.







Handbook of Flame Spectroscopy


Book Description

Analytical flame spectroscopy is a rich and growing disci pline, rooted in the broad fields of physics and chemistry. Its applications abound not only in these large areas, but also thrive in the geosciences, materials science, and clinical and biochemical analysis. As an inevitable corollary of the field's growth, the scientist seeking to develop a fluent expertise has been forced to assimilate and master a rapidly increasing quantity of information. Our guiding hope in creating the present work has therefore been to provide the investigator with a single reference source for nearly all the material ever likely to be required in the daily conduct of basic or applied research. Flame spectroscopy is not a new analytical field. It has seen at least three major eras, in each of which much new information was developed - the Bunsen-Kirchhoff years, the Beckman D. U. years, and finally the atomic absorption years. In the Bunsen-Kirchhoff era, several new elements were discovered. During the Beckman years - nearly all the early flame emission data were taken on modified Beckman D. U. spectrometers - trace metal analysis for the alkaline metals and for many alkaline earth elements reached a new high (low?) - the parts per million level. More recently, trace metal analysis has in general achieved a new maturity with the advent of atomic absorption analysis, which was co-discovered by C. Th. J. Alkemade and Alan Walsh in 1955.