Flip Chip Technologies


Book Description

A guide to flip chip technologies, for professionals in flip chip and MCM research and development, and for engineers and technical managers choosing design and manufacturing processes for electronic packaging and interconnect systems. Discusses economic, design, material, quality, and reliability issues of flip chip technologies, and details aspects of classical solder-bumped flip chip interconnect technologies; the next generations of flip chip technologies; and known-good-die testing for multiple module applications. Annotation copyright by Book News, Inc., Portland, OR




Advanced Flip Chip Packaging


Book Description

Advanced Flip Chip Packaging presents past, present and future advances and trends in areas such as substrate technology, material development, and assembly processes. Flip chip packaging is now in widespread use in computing, communications, consumer and automotive electronics, and the demand for flip chip technology is continuing to grow in order to meet the need for products that offer better performance, are smaller, and are environmentally sustainable.




Low Cost Flip Chip Technologies


Book Description

Of the Standard NuBGA Packages -- Thinner Substrate and Nonuniform Heat Spreader NuBGA -- Thermal Performance of the New NuBGA Package -- Temperature Distribution -- Thermal Resistance -- Cooling Power -- Wind Tunnel Experimental Analysis -- Solder Joint Reliability of the New NuBGA Package -- Electrical Performance of the New NuBGA Package -- Capacitance -- Inductance -- Summary of the New NuBGA Package -- Solder-Bumped Flip Chip in PBGA Packages -- Intel's OLGA Package Technology -- OLGA Package Design -- OLGA Wafer Bumping -- OLGA Substrate Technology -- OLGA Package Assembly -- OLGA Package Reliability -- Mitsubishi's FC-BGA Package -- Wafer Bumping -- Mitsubishi's SBU Substrate -- PC-BGA Assembly Process -- Thermal Management -- Electrical Performance -- Qualification Tests and Results -- IBM's FC-PBGA Package -- CFD Analysis for Thermal Boundary Conditions -- Nonlinear Finite Element Stress Analysis -- Simulation Results -- Solder Joint Thermal Fatigue Life Prediction -- Motorola's FC-PBGA Packages -- Thermal Management of FC-PBGA Assemblies with E3 Bumps -- Solder Joint Reliability of FC-PBGA Assemblies with C4 Bumps -- Failure Analysis of Flip Chip on Low-Cost Substrates -- Failure Analysis of FCOB with Imperfect Underfills -- Test Chip -- Test Board -- Flip Chip Assembly -- Preconditions, Reflows, and Qualification Tests -- Failure Modes and Discussions -- Die Cracking -- Interfacial Shear Strength -- Interfacial Shear Strength Between Solder Mask and Underfill.




Reflow Soldering Processes


Book Description

Focused on technological innovations in the field of electronics packaging and production, this book elucidates the changes in reflow soldering processes, its impact on defect mechanisms, and, accordingly, the troubleshooting techniques during these processes in a variety of board types. Geared toward electronics manufacturing process engineers, design engineers, as well as students in process engineering classes, Reflow Soldering Processes and Troubleshooting will be a strong contender in the continuing skill development market for manufacturing personnel. Written using a very practical, hands-on approach, Reflow Soldering Processes and Troubleshooting provides the means for engineers to increase their understanding of the principles of soldering, flux, and solder paste technology. The author facilitates learning about other essential topics, such as area array packages--including BGA, CSP, and FC designs, bumping technique, assembly, and rework process,--and provides an increased understanding of the reliability failure modes of soldered SMT components. With cost effectiveness foremost in mind, this book is designed to troubleshoot errors or problems before boards go into the manufacturing process, saving time and money on the front end. The author's vast expertise and knowledge ensure that coverage of topics is expertly researched, written, and organized to best meet the needs of manufacturing process engineers, students, practitioners, and anyone with a desire to learn more about reflow soldering processes. Comprehensive and indispensable, this book will prove a perfect training and reference tool that readers will find invaluable. Provides engineers the cutting-edge technology in a rapidly changing field Offers in-depth coverage of the principles of soldering, flux, solder paste technology, area array packages--including BGA, CSP, and FC designs, bumping technique, assembly, and the rework process




Integrated Circuit Packaging, Assembly and Interconnections


Book Description

Reviewing the various IC packaging, assembly, and interconnection technologies, this professional reference provides an overview of the materials and the processes, as well as the trends and available options that encompass electronic manufacturing. It covers both the technical issues and touches on some of the reliability concerns with the various technologies applicable to packaging and assembly of the IC. The book discusses the various packaging approaches, assembly options, and essential manufacturing technologies, among other relevant topics.







Materials for Advanced Packaging


Book Description

Significant progress has been made in advanced packaging in recent years. Several new packaging techniques have been developed and new packaging materials have been introduced. This book provides a comprehensive overview of the recent developments in this industry, particularly in the areas of microelectronics, optoelectronics, digital health, and bio-medical applications. The book discusses established techniques, as well as emerging technologies, in order to provide readers with the most up-to-date developments in advanced packaging.




Semiconductor Advanced Packaging


Book Description

The book focuses on the design, materials, process, fabrication, and reliability of advanced semiconductor packaging components and systems. Both principles and engineering practice have been addressed, with more weight placed on engineering practice. This is achieved by providing in-depth study on a number of major topics such as system-in-package, fan-in wafer/panel-level chip-scale packages, fan-out wafer/panel-level packaging, 2D, 2.1D, 2.3D, 2.5D, and 3D IC integration, chiplets packaging, chip-to-wafer bonding, wafer-to-wafer bonding, hybrid bonding, and dielectric materials for high speed and frequency. The book can benefit researchers, engineers, and graduate students in fields of electrical engineering, mechanical engineering, materials sciences, and industry engineering, etc.




Multichip Module Technologies and Alternatives: The Basics


Book Description

Far from being the passive containers for semiconductor devices of the past, the packages in today's high performance computers pose numerous challenges in interconnecting, powering, cooling and protecting devices. While semiconductor circuit performance measured in picoseconds continues to improve, computer performance is expected to be in nanoseconds for the rest of this century -a factor of 1000 difference between on-chip and off-chip performance which is attributable to losses associated with the package. Thus the package, which interconnects all the chips to form a particular function such as a central processor, is likely to set the limits on how far computers can evolve. Multichip packaging, which can relax these limits and also improve the reliability and cost at the systems level, is expected to be the basis of all advanced computers in the future. In addition, since this technology allows chips to be spaced more closely, in less space and with less weight, it has the added advantage of being useful in portable consumer electronics as well as in medical, aerospace, automotive and telecommunications products. The multichip technologies with which these applications can be addressed are many. They range from ceramics to polymer-metal thin films to printed wiring boards for interconnections; flip chip, TAB or wire bond for chip-to-substrate connections; and air or water cooling for the removal of heat.




Solder Joint Reliability Assessment


Book Description

This book presents a systematic approach in performing reliability assessment of solder joints using Finite Element (FE) simulation. Essential requirements for FE modelling of an electronic package or a single reflowed solder joint subjected to reliability test conditions are elaborated. These cover assumptions considered for a simplified physical model, FE model geometry development, constitutive models for solder joints and aspects of FE model validation. Fundamentals of the mechanics of solder material are adequately reviewed in relation to FE formulations. Concept of damage is introduced along with deliberation of cohesive zone model and continuum damage model for simulation of solder/IMC interface and bulk solder joint failure, respectively. Applications of the deliberated methodology to selected problems in assessing reliability of solder joints are demonstrated. These industry-defined research-based problems include solder reflow cooling, temperature cycling and mechanical fatigue of a BGA package, JEDEC board-level drop test and mechanisms of solder joint fatigue. Emphasis is placed on accurate quantitative assessment of solder joint reliability through basic understanding of the mechanics of materials as interpreted from results of FE simulations. The FE simulation methodology is readily applicable to numerous other problems in mechanics of materials and structures.