Floods of May 30 to June 15, 2008, in the Iowa River and Cedar River Basins, Eastern Iowa


Book Description

Within the Iowa River Basin, peak discharges of 51,000 cubic feet per second (flood-probability estimate of 0.2 to 1 percent) at the 05453100 Iowa River at Marengo, Iowa streamflow-gaging station (streamgage) on June 12, and of 39,900 cubic feet per second (flood-probability estimate of 0.2 to 1 percent) at the 05453520 Iowa River below Coralville Dam near Coralville, Iowa streamgage on June 15 are the largest floods on record for those sites. A peak discharge of 41,100 cubic feet per second (flood-probability estimate of 0.2 to 1 percent) on June 15 at the 05454500 Iowa River at Iowa City, Iowa streamgage is the fourth highest on record, but is the largest flood since regulation by the Coralville Dam began in 1958. Within the Cedar River Basin, the May 30 to June 15, 2008, flood is the largest on record at all six streamgages in Iowa located on the mainstem of the Cedar River and at five streamgages located on the major tributaries.




Summary of U.S. Geological Survey Reports Documenting Flood Profiles of Streams in Iowa, 1963-2012


Book Description

"This report is part of an ongoing program that is publishing flood profiles of streams in Iowa. The program is managed by the U.S. Geological Survey in cooperation with the Iowa Department of Transportation and the Iowa Highway Research Board (Project HR-140). Information from flood profiles is used by engineers to analyze and design bridges, culverts, and roadways. This report summarizes 47 U.S. Geological Survey flood-profile reports that were published for streams in Iowa during a 50-year period from 1963 to 2012. Flood events profiled in the reports range from 1903 to 2010. Streams in Iowa that have been selected for the preparation of flood-profile reports typically have drainage areas of 100 square miles or greater, and the documented flood events have annual exceedance probabilities of less than 2 to 4 percent. This report summarizes flood-profile measurements, changes in flood-profile report content throughout the years, streams that were profiled in the reports, the occurrence of flood events profiled, and annual exceedance-probability estimates of observed flood events. To develop flood profiles for selected flood events for selected stream reaches, the U.S. Geological Survey measured high-water marks and river miles at selected locations. A total of 94 stream reaches have been profiled in U.S. Geological Survey flood-profile reports. Three rivers in Iowa have been profiled along the same stream reach for five different flood events and six rivers in Iowa have been profiled along the same stream reach for four different flood events. Floods were profiled for June flood events for 18 different years, followed by July flood events for 13 years, May flood events for 11 years, and April flood events for 9 years. Most of the flood-profile reports include estimates of annual exceedance probabilities of observed flood events at streamgages located along profiled stream reaches. Comparisons of 179 historic and updated annual exceedance- probability estimates indicate few differences that are considered substantial between the historic and updated estimates for the observed flood events. Overall, precise comparisons for 114 observed flood events indicate that updated annual exceedance probabilities have increased for most of the observed flood events compared to the historic annual exceedance probabilities. Multiple large flood events exceeding the 2-percent annual exceedance-probability discharge estimate occurred at 37 of 98 selected streamgages during 1960-2012. Five large flood events were recorded at two streamgages in Ames during 1990-2010 and four large flood events were recorded at four other streamgages during 1973-2010. Results of Kendall's tau trend-analysis tests for 35 of 37 selected streamgages indicate that a statistically significant trend is not evident for the 1963-2012 period of record; nor is an overall clear positive or negative trend evident for the 37 streamgages."--Abstract, page [1].







Atmospheric Rivers


Book Description

This book is the standard reference based on roughly 20 years of research on atmospheric rivers, emphasizing progress made on key research and applications questions and remaining knowledge gaps. The book presents the history of atmospheric-rivers research, the current state of scientific knowledge, tools, and policy-relevant (science-informed) problems that lend themselves to real-world application of the research—and how the topic fits into larger national and global contexts. This book is written by a global team of authors who have conducted and published the majority of critical research on atmospheric rivers over the past years. The book is intended to benefit practitioners in the fields of meteorology, hydrology and related disciplines, including students as well as senior researchers.




Wetland Action Plan for Iowa


Book Description




Climatological Data


Book Description







Disaster Resilience


Book Description

No person or place is immune from disasters or disaster-related losses. Infectious disease outbreaks, acts of terrorism, social unrest, or financial disasters in addition to natural hazards can all lead to large-scale consequences for the nation and its communities. Communities and the nation thus face difficult fiscal, social, cultural, and environmental choices about the best ways to ensure basic security and quality of life against hazards, deliberate attacks, and disasters. Beyond the unquantifiable costs of injury and loss of life from disasters, statistics for 2011 alone indicate economic damages from natural disasters in the United States exceeded $55 billion, with 14 events costing more than a billion dollars in damages each. One way to reduce the impacts of disasters on the nation and its communities is to invest in enhancing resilience-the ability to prepare and plan for, absorb, recover from and more successfully adapt to adverse events. Disaster Resilience: A National Imperative addresses the broad issue of increasing the nation's resilience to disasters. This book defines "national resilience", describes the state of knowledge about resilience to hazards and disasters, and frames the main issues related to increasing resilience in the United States. It also provide goals, baseline conditions, or performance metrics for national resilience and outlines additional information, data, gaps, and/or obstacles that need to be addressed to increase the nation's resilience to disasters. Additionally, the book's authoring committee makes recommendations about the necessary approaches to elevate national resilience to disasters in the United States. Enhanced resilience allows better anticipation of disasters and better planning to reduce disaster losses-rather than waiting for an event to occur and paying for it afterward. Disaster Resilience confronts the topic of how to increase the nation's resilience to disasters through a vision of the characteristics of a resilient nation in the year 2030. Increasing disaster resilience is an imperative that requires the collective will of the nation and its communities. Although disasters will continue to occur, actions that move the nation from reactive approaches to disasters to a proactive stance where communities actively engage in enhancing resilience will reduce many of the broad societal and economic burdens that disasters can cause.