Flow Around Circular Cylinders


Book Description

This text offers an authoritative compilation of experimental data, theoretical models, and computer simulations which will provide the reader with a comprehensive survey of research work on the phenomenon of flow around circular cylinders.




Hydrodynamics Around Cylindrical Structures


Book Description

This book discusses the subject of wave/current flow around a cylinder, the forces induced on the cylinder by the flow, and the vibration pattern of slender structures in a marine environment.The primary aim of the book is to describe the flow pattern and the resulting load which develops when waves or current meet a cylinder. Attention is paid to the special case of a circular cylinder. The development in the forces is related to the various flow patterns and is discussed in detail. Regular as well as irregular waves are considered, and special cases like wall proximities (pipelines) are also investigated.The book is intended for MSc students with some experience in basic fluid mechanics and for PhD students.




Integrability, Self-duality, and Twistor Theory


Book Description

Many of the familiar integrable systems of equations are symmetry reductions of self-duality equations on a metric or on a Yang-Mills connection. For example, the Korteweg-de Vries and non-linear Schrodinger equations are reductions of the self-dual Yang-Mills equation. This book explores in detail the connections between self-duality and integrability, and also the application of twistor techniques to integrable systems. It supports two central theories: that the symmetries of self-duality equations provide a natural classification scheme for integrable systems; and that twistor theory provides a uniform geometric framework for the study of Backlund transformations, the inverse scattering method, and other such general constructions of integrability theory. The book will be useful to researchers and graduate students in mathematical physics.




Robots and Screw Theory


Book Description

Robots and Screw Theory describes the mathematical foundations, especially geometric, underlying the motions and force-transfers in robots. The principles developed in the book are used in the control of robots and in the design of their major moving parts. The illustrative examples and the exercises in the book are taken principally from robotic machinery used for manufacturing and construction, but the principles apply equally well to miniature robotic devices and to those used in other industries. The comprehensive coverage of the screw and its geometry lead to reciprocal screw systems for statics and instantaneous kinematics. These screw systems are brought together in a unique way to show many cross-relationships between the force-systems that support a body equivalently to a kinematic serial connection of joints and links. No prior knowledge of screw theory is assumed. The reader is introduced to the screw with a simple planar example yet most of the book applies to robots that move three-dimensionally. Consequently, the book is suitable both as a text at the graduate-course level and as a reference book for the professional. Worked examples on every major topic and over 300 exercises clarify and reinforce the principles covered in the text. A chapter-length list of references gives the reader source-material and opportunities to pursue more fully topics contained in the text.




A Critical Review of Analytical Methods for Estimating Control Forces Produced by Secondary Injection


Book Description

The problem discussed is that of theoretically predicting the normal force induced in the boundary layer separation region immediately ahead of a secondary injection port. Attention was limited to the two-dimensional problem of sonic or supersonic normal injection into supersonic or hypersonic mainstreams. A critical review of available experimental studies was conducted in order to isolate those data best representing a two-dimensional state. The resulting compilation of experimental results was thereafter employed as a basis of comparison for available theoretical and empirical flow models. As a result it was found that analytical means are only capable of rough quantitative estimates of control jet effectiveness and that a more detailed flow model is needed to further explain observed phenomenon. The basic features of such a model are formulated and its conceptual validity demonstrated through comparison with experimental results. Problem areas requiring further research are also discussed in detail. (Author).




2D Electrostatic Fields


Book Description

This book demonstrates how to use functions of a complex variable to solve engineering problems that obey the 2D Laplace equation (and in some cases the 2D Poisson equation). The book was written with the engineer/physicist in mind and the majority of the book focuses on electrostatics. A key benefit of the complex variable approach to electrostatics is the visualization of field lines through the use of field maps. With todays’ powerful computers and mathematical software programs, field maps are easily generated once the complex potential has been determined. Additionally, problems that would have been considered out of scope previously are now easily solved with these mathematical software programs. For example, solutions requiring the use of non-elementary functions such as elliptic and hypergeometric functions would have been viewed as not practical in the past due to the tedious use of look up tables for evaluation. Now, elliptic and hypergeometric functions are built-in functions for most mathematical software programs making their evaluation as easy as a trigonometric function. Key highlights in the book include 2D electrostatics completely formulated in terms of complex variables More than 60 electrostatic field maps Comprehensive treatment for obtaining Green’s functions with conformal mapping Fully worked Schwarz-Christoffel transformations to more than usual number of problems A full chapter devoted to solving practical problems at an advanced level Detailed solutions to all end of chapter problems available on book’s website Although the text is primarily self-contained, the reader is assumed to have taken differential and integral calculus and introductory courses in complex variables and electromagnetics.




Flow-induced Vibration


Book Description

Focuses on applications for offshore platforms and piping; and, wind-induced vibration of buildings, bridges, and towers. This title also focuses on acoustic and mechanical vibration of heat exchangers, power lines, and process ducting.




Visualized Flow


Book Description

Flow Visualization always plays an important role in understanding flow phenomena and contributes significantly to the physical intuitive reasonong necessary to successfully apply the knowledge gained to real life situations. This book is designed to enhance the understanding of basic flow phenomena through over 200 high quality flow visualization photographs, some in colour, and explanations. The book opens with a summary of flow visualization methods, and then proceeds to present flow phenomena as revealed by various flow visualization techniques. The treatment ranges from fundamental aspects, such as laminar and turbulent flow, to engineering applications; for example, understanding why cavitation damage occurred on the runner of a Francis turbine. Current and new visualization techniques are employed such that invisible flow, as in air and water, is made clearly visible and comprehensible. Visualized Flow was compiled and edited under the guidance of the Japanese Society of Mechanical Engineers. This English edition will be indispensable to engineers, researchers and students in understanding flow phenomena across the wide range of sciences wherever fluid flow is important.




A Critical Review of the Intrinsic Nature of Vortex Induced Vibrations


Book Description

This is a concise and comprehensive review of the progress made during the past two decades on vortex induced vibration (VIV) of mostly circular cylindrical structures subjected to steady uniform flow. The critical elements of the evolution of the ideas, theoretical insights, experimental methods, and numerical models are traced systematically; the strengths and weaknesses of the current state of the understanding of the complex fluid/structure interaction are discussed in some detail. Finally, some suggestions are made for further research on VIV. The organization of the paper is given at the end of the next section.