Flow Field Within and Above a Forest Canopy: Task I: Study of Airflow in Simulated Temperate and Tropical Forest Canopies


Book Description

The velocity and longitudinal turbulence intensity distributions inside and above a forest canopy along its center line were investigated. For this purpose a model forest canopy was used in a meteorological wind tunnel. The results indicate that the flow may be divided into an entrance and fully developed region followed by a short adjustment distance close to canopy end. The entrance region has a decisive effect on the flow characteristics through the canopy. The velocity and turbulence inside the canopy are strongly affected by its structure. A similar qualitative variation for both velocity and turbulence was found in and above the canopy. Its influence stretches over more than 4 roughness heights above it. Generally, the results are in relatively reasonable agreement with field measurements. Investigation of the modified logarithmic law for describing the velocity profile above the canopy revealed that both flow parameters, i.e., friction velocity and roughness length, are not local constants. On the contrary, they vary drastically with height. It is suspected that this is due to the fact the assumption of constant shear stress throughout the boundary layer or significant portions of it is not satisfied. (Author).







Scientific and Technical Aerospace Reports


Book Description

Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.













Numerical Simulation of Canopy Flows


Book Description

Starting with the description of meteorological variables in forest canopies and its parameter variations, a numerical three-dimentional model is developed. Its applicability is demonstrated, first, by wind sheltering effects of hedges and, second, by the effects of deforestation on local climate in complex terrain. Scientists in ecology, agricultural botany and meteorology, but also urban and regional lanners will profit from this study finding the most effective solution for their specific problems.