Solvent Extraction


Book Description

The main challenge in modern solvent extraction separation is that most techniques are mainly empirical, specific and particular for narrow fields of practice and require a large degree of experimentation. This concise and modern book provides a complete overview of both solvent extraction separation techniques and the novel and unified competitive complexation/solvation theory. This novel and unified technique presented in the book provides a key for a preliminary quantitative prediction of suitable extraction systems without experimentation, thus saving researchers time and resources. Analyzes and compares both classical and new competitive models and techniques Offers a novel and unified competitive complexation / solvation theory that permits researchers to standardize some parameters, which decreases the need for experimentation at R&D Presents examples of applications in multiple disciplines such as chemical, biochemical, radiochemical, pharmaceutical and analytical separation Written by an outstanding scientist who is prolific in the field of separation science




Solvent Extraction Principles and Practice, Revised and Expanded


Book Description

A complete and up-to-date presentation of the fundamental theoretical principles and many applications of solvent extraction, this enhanced Solvent Extraction Principles and Practice, Second Edition includes new coverage of the recent developments in solvent extraction processes, the use of solvent extraction in analytical applications and waste recovery, and computational chemistry methods for modeling the solvent extraction of metal ions. Offering sound scientific and technical descriptions in a format accessible to students and expedient for researchers and engineers, this edition also features a new chapter on ionic strength corrections and contains more than 850 up-to-date literature citations.




Preconcentration Techniques For Trace Elements


Book Description

Accurate determination of trace elements is critical in various fields of science and technology. Direct measurement of trace elements in samples with complex matrices is often impractical, either due to analytical sensitivity limitations or matrix interferences. Preconcentration procedures are generally needed to eliminate matrix interferences and/or enrich minute amounts of analytes to a level for reliable measurements. Preconcentration Techniques for Trace Elements provides up-to-date information on various preconcentration techniques and detailed discussions regarding such topics as the dissolution of matrices, coprecipitation, solvent extraction, electrochemical means, ion exchange, sorption, chromatographic methods, flotation, membranes, volatization, polymer foam sorbents, fire assay, isotachophoresis, and filter papers. This comprehensive volume, featuring contributions from 21 experts from nine countries, will provide valuable reference material for all scientists and technicians dealing with trace analysis of real-world samples.




Analysis of Oceanic Waters and Sediments


Book Description

The presence of concentrations of organic substances and cations in seawater is a matter of increasing concern to the water industry, environmentalists and the general public alike. It poses a threat of possible health hazards for humans, fish and crustacea. Until fairly recently, the analysis of seawater was limited to a number of major constituen




Flow Analysis with Atomic Spectrometric Detectors


Book Description

Flow Analysis (FA) offers a very convenient and fast approach to enhance and automate 'preliminary steps' of analysis (sample dissolution, pretreatments, preconcentrations, etc.) for atomic spectrometric detectors (ASD). Moreover, flow manifolds can ease the well-known problem of sample introduction/presentation to atomisers or even expand the classical scope of atomic/elemental information, characterizing atomic spectrometry, into the realm of molecules and metal-compounds analysis (e.g. by resorting to coupled separation techniques). All these facts could explain both the extraordinary interest for research and the great importance for practical problem-solving achieved nowadays by FA-ASD.On the threshold of the new millennium when plasma emission and mass spectrometry are so important and popular, the editor considered it timely to produce a book which covers all present atomic detectors and techniques where FA has been or can be advantageously employed. The book has been conceived in three separate parts:Part I gives the fundamental, instrumentation and potential of FIA as a most versatile sample presentation/introduction system for atomic spectrometry.Part II provides a modern account of fundamentals, possibilities and applications offered by flow analysis to atomic spectrometry for on-line sample pretreatments, separations and preconcentrations.Part III deals with applications of FA-ASD combinations to analytical problem-solving in most varied fields and situations.This monograph integrates the most popular aspects of FIA, its new developments for sample on-line treatments and on-line non-chromatographic and chromatographic separations (all typical 'flow analysis') in connection with all branches of analytical atomic spectrometry. Thus, academics, researchers and routine users of analytical atomic spectrometry will find this book invaluable.




Liquid-Phase Extraction


Book Description

Liquid Phase Extraction thoroughly presents both existing and new techniques in liquid phase extraction. It not only provides all information laboratory scientists need for choosing and utilizing suitable sample preparation procedures for any kind of sample, but also showcases the contemporary uses of sample preparation techniques in the most important industrial and academic project environments, including countercurrent chromatography, pressurized-liquid extraction, single-drop Microextraction, and more. Written by recognized experts in their respective fields, it serves as a one-stop reference for those who need to know which technique to choose for liquid phase extraction. Used in conjunction with a similar release, Solid Phase Extraction, it allows users to master this crucial aspect of sample preparation. - Defines the current state-of-the-art in extraction techniques and the methods and procedures for implementing them in laboratory practice - Includes extensive referencing that facilitates the identification of key information - Aimed at both entry-level scientists and those who want to explore new techniques and methods







Analytical Instrumentation Handbook


Book Description

Compiled by the editor of Dekker's distinguished Chromatographic Science series, this reader-friendly reference is as a unique and stand-alone guide for anyone requiring clear instruction on the most frequently utilized analytical instrumentation techniques. More than just a catalog of commercially available instruments, the chapters are wri




Advances in Flow Injection Analysis and Related Techniques


Book Description

The concept of flow injection analysis (FIA) was first proposed in 1975 by Ruzicka and Hansen, and this initiated a field of research that would, over more than three decades, involve thousands of researchers, and which has to date resulted in close to 20,000 publications in the international scientific literature. Since its introduction, a number of books, including some specialized monographs, have been published on this subject with the latest in 2000. However, in this decade there has been a number of significant advances in the flow analysis area, and in particular in sequential injection analysis (SIA) techniques, and more recently with the introduction of Lab on a Valve (LOV) and bead injection flow systems. This book aims to cover the most important advances in these new areas, as well as in classical FIA, which still remains the most popular flow analysis technique used in analytical practice. Topics covered in the 23 chapters include the fundamental and underlying principles of flow analysis and associated equipment, the fluid-dynamic theory of FIA, an extensive coverage of detection methods (e.g. atomic and molecular spectrometry, electroanalytical methods). In addition, there are several chapters on on-line separation (e.g. filtration, gas diffusion, dialysis, pervaporation, solvent and membrane extraction, and chromatography), as well as on other sample pretreatment techniques, such as digestion. The book also incorporates several chapters on major areas of application of flow analysis in industrial process monitoring (e.g food and beverages, drugs and pharmaceuticals), environmental and agricultural analysis and life sciences. The contributing authors, who include the founders of flow injection analysis, are all leading experts in flow analytical techniques, and their chapters not only provide a critical review of the current state of this area, but also suggest future trends. Provides a critical review of the current state of and future trends in flow analytical techniques Offers a comprehensive elucidation of the principles and theoretical basis of flow analysis Presents important applications in all major areas of chemical analysis, from food products to environmental concerns




Preconcentration Techniques for Natural and Treated Waters


Book Description

Equipment used for the analysis of water is frequently insufficiently sensitive to be able to detect the low concentrations of organic and inorganic substances present in samples. Applying preconcentration to the sample prior to analysis means the results gained are more accurate and can be used to report trends more effectively. Each chapter of Preconcentration Techniques for Natural and Treated Waters discusses a different method of preconcentration and its application to the preconcentration of cations, anions, organic substances and organometallic compounds. Drawing together the recent world literature available on the subject, this book provides detailed discussion of the need for reducing detection limits in analytical chemistry and ways of achieving this aim. Throughout the book emphasis is laid on providing practical experimental detail, facilitating further development of procedures. Numerous tables present information clearly and accessibly. This book will be an invaluable reference for biologists, chemists, agriculturists, toxicologists, oceanographers, and environmentalists dealing with the analysis of water in industry and academia.