Fundamentals of Turbomachines


Book Description

This book explores the working principles of all kinds of turbomachines. The same theoretical framework is used to analyse the different machine types. Fundamentals are first presented and theoretical concepts are then elaborated for particular machine types, starting with the simplest ones.For each machine type, the author strikes a balance between building basic understanding and exploring knowledge of practical aspects. Readers are invited through challenging exercises to consider how the theory applies to particular cases and how it can be generalised. The book is primarily meant as a course book. It teaches fundamentals and explores applications. It will appeal to senior undergraduate and graduate students in mechanical engineering and to professional engineers seeking to understand the operation of turbomachines. Readers will gain a fundamental understanding of turbomachines. They will also be able to make a reasoned choice of turbomachine for a particular application and to understand its operation. Basic design of the simplest turbomachines as a centrifugal fan, an axial steam turbine or a centrifugal pump, is also possible using the topics covered in the book.




Turbomachinery Fluid Dynamics and Heat Transfer


Book Description

This festschrift in honor of Professor Budugur Lakshminarayana's 60th birthday-based on the proceedings of a symposium on Turbomachinery Fluid Dynamics and Heat Transfer held recently at The Pennsylvania State University, University Park-provides authoritative and conclusive research results as well as new insights into complex flow features found in the turbomachinery used for propulsion, power, and industrial applications. Explaining in detail compressors, heat transfer fields in turbines, computational fluid dynamics, and unsteady flows, Turbomachinery Fluid Dynamics and Heat Transfer covers: Mixing mechanisms, annulus wall boundary layers, and the flow field in transonic turbocompressors The numerical implementation of turbulence models in a computer code Secondary flows, film cooling, and thermal turbulence modeling The visualization method of modeling using liquid crystals Innovative techniques in the computational modeling of compressor and turbine flows measurement in unsteady flows as well as axial flows and compressor noise generation And much more Generously illustrated and containing key bibliographic citations, Turbomachinery Fluid Dynamics and Heat Transfer is an indispensable resource for mechanical, design, aerospace, marine, manufacturing, materials, industrial, and reliability engineers; and upper-level undergraduate and graduate students in these disciplines.




Turbomachinery


Book Description

Turbomachinery presents the theory and design of turbomachines with step-by-step procedures and worked-out examples. This comprehensive reference emphasizes fundamental principles and construction guidelines for enclosed rotators and contains end-of-chapter problem and solution sets, design formulations, and equations for clear understanding of key aspects in machining function, selection, assembly, and construction. Offering a wide range of illustrative examples, the book evaluates the components of incompressible and compressible fluid flow machines and analyzes the kinematics and dynamics of turbomachines with valuable definitions, diagrams, and dimensionless parameters.




Fluid Machinery


Book Description

Fluid Machinery: Performance, Analysis, and Design provides a comprehensive introduction to the fluid mechanics of turbomachinery. By focusing on the preliminary design and selection of equipment to meet a set of performance specifications-including size, noise, and cost limitations-the author promotes a basic but thorough understanding of the subject. His pragmatic approach exposes students to a realistic array of conflicting requirements and real-world industrial applications, while providing a solid background for more advanced study. Coveriage of both gas and hydraulic turbines and emphasis on industrial issues and equipment makes this book ideal for mechanical engineering students. Fluid Machinery uses extensive illustration, examples, and exercises to prepare students to confront industrial applications with confidence.




Turbomachinery Flow Physics and Dynamic Performance


Book Description

Over the past three decades turbomachines experienced a steep increase in efficiency and performance. Based on fundamental principles of turbomachinery thermo-fluid mechanics, numerous CFD based calculation methods are being developed to simulate the complex 3-dimensional, highly unsteady turbulent flow within turbine or compressor stages. The objective of this book is to present the fundamental principals of turbomachinery fluid-thermodynamic design process of turbine and compressor components, power generation and aircraft gas turbines in a unified and compact manner. The book provides senior undergraduate students, graduate students and engineers in the turbomachinery industry with a solid background of turbomachinery flow physics and performance fundamentals that are essential for understanding turbomachinery performance and flow complexes.




Fluid Mechanics and Turbomachinery


Book Description

Includes over 250 solved problems to supplement graduate-level courses in fluid mechanics and turbomachinery. Enables students to practice applying key concepts of fluid mechanics and the governing conservation laws to solve real-world problems. Uses the physics-first approach, allowing for a good understanding of the problem physics and the results obtained. Covers problems on flowpath aerodynamics design. Covers problems on secondary air systems modeling of gas turbines.




Principles of Turbomachinery


Book Description

A newly updated and expanded edition that combines theory and applications of turbomachinery while covering several different types of turbomachinery In mechanical engineering, turbomachinery describes machines that transfer energy between a rotor and a fluid, including turbines, compressors, and pumps. Aiming for a unified treatment of the subject matter, with consistent notation and concepts, this new edition of a highly popular book provides all new information on turbomachinery, and includes 50% more exercises than the previous edition. It allows readers to easily move from a study of the most successful textbooks on thermodynamics and fluid dynamics to the subject of turbomachinery. The book also builds concepts systematically as progress is made through each chapter so that the user can progress at their own pace. Principles of Turbomachinery, 2nd Edition provides comprehensive coverage of everything readers need to know, including chapters on: thermodynamics, compressible flow, and principles of turbomachinery analysis. The book also looks at steam turbines, axial turbines, axial compressors, centrifugal compressors and pumps, radial inflow turbines, hydraulic turbines, hydraulic transmission of power, and wind turbines. New chapters on droplet laden flows of steam and oblique shocks help make this an incredibly current and well-rounded resource for students and practicing engineers. Includes 50% more exercises than the previous edition Uses MATLAB or GNU/OCTAVE for all the examples and exercises for which computer calculations are needed, including those for steam Allows for a smooth transition from the study of thermodynamics, fluid dynamics, and heat transfer to the subject of turbomachinery for students and professionals Organizes content so that more difficult material is left to the later sections of each chapter, allowing instructors to customize and tailor their courses for their students Principles of Turbomachinery is an excellent book for students and professionals in mechanical, chemical, and aeronautical engineering.




Principles of Turbomachinery


Book Description

This text outlines the fluid and thermodynamic principles that apply to all classes of turbomachines, and the material has been presented in a unified way. The approach has been used with successive groups of final year mechanical engineering students, who have helped with the development of the ideas outlined. As with these students, the reader is assumed to have a basic understanding of fluid mechanics and thermodynamics. However, the early chapters combine the relevant material with some new concepts, and provide basic reading references. Two related objectives have defined the scope of the treatment. The first is to provide a general treatment of the common forms of turbo machine, covering basic fluid dynamics and thermodynamics of flow through passages and over surfaces, with a brief derivation of the fundamental governing equations. The second objective is to apply this material to the various machines in enough detail to allow the major design and performance factors to be appreciated. Both objectives have been met by grouping the machines by flow path rather than by application, thus allowing an appreciation of points of similarity or difference in approach. No attempt has been made to cover detailed points of design or stressing, though the cited references and the body of information from which they have been taken give this sort of information. The first four chapters introduce the fundamental relations, and the suc ceeding chapters deal with applications to the various flow paths.







Logan's Turbomachinery


Book Description

Logan's Turbomachinery: Flowpath Design and Performance Fundamentals, Third Edition is the long-awaited revision of this classic textbook, thoroughly updated by Dr. Bijay Sultanian. While the basic concepts remain constant, turbomachinery design has advanced since the Second Edition was published in 1993. Airfoils in modern turbomachines feature three-dimensional geometries, Computational Fluid Mechanics (CFD) has become a standard design tool, and major advances have been made in the materials and manufacturing technologies that affect turbomachinery design. The new edition adresses these trends to best serve today's students, and design engineers working in turbomachinery industries.