Millimeter-Wave Waveguides


Book Description

Millimeter-Wave Waveguides is a monograph devoted to open waveguides for millimeter wave applications. In the first chapters, general waveguide theory is presented (with the emphasis on millimeter wave applications). Next, the book systematically describes the results of both theoretical and experimental studies of rectangular dielectric rod waveguides with high dielectric permittivities. Simple and accurate methods for propagation constant calculations for isotropic as well as anisotropic dielectric waveguides are described. Both analytical and numerical approaches are covered. Different types of transitions have been simulated in order to find optimal configurations as well as optimal dimensions of dielectric waveguides for the frequency band of 75-110 GHz. Simple and effective design is presented. The experimental studies of dielectric waveguides show that Sapphire waveguide can be utilized for this frequency band as a very low-loss waveguide. Design of antennas with low return loss based on dielectric waveguides is also described.




Aperture Antennas for Millimeter and Sub-Millimeter Wave Applications


Book Description

This book presents the technology of millimetre waves and Terahertz (THz) antennas. It highlights the importance of moderate and high-gain aperture antennas as key devices for establishing point-to-point and point-to-multipoint radio links for far-field and near-field applications, such as high data-rate communications, intelligent transport, security imaging, exploration and surveillance systems. The book provides a comprehensive overview of the key antenna technologies developed for the mm wave and THz domains, including established ones – such as integrated lens antennas, advanced 2D and 3D horn antennas, transmit and reflect arrays, and Fabry-Perot antennas – as well as emerging metasurface antennas for near-field and far-field applications. It describes the pros and cons of each antenna technology in comparison with other available solutions, a discussion supplemented by practical examples illustrating the step-by-step implementation procedures for each antenna type. The measurement techniques available at these frequency ranges are also presented to close the loop of the antenna development cycle. In closing, the book outlines future trends in various antenna technologies, paving the way for further developments. Presenting content originating from the five-year ESF research networking program ‘Newfocus’ and co-authored by the most active and highly cited research groups in the domain of mm- and sub-mm-wave antenna technologies, the book offers a valuable guide for researchers and engineers in both industry and academia.




Millimeter Wave Wireless Communications


Book Description

The Definitive, Comprehensive Guide to Cutting-Edge Millimeter Wave Wireless Design “This is a great book on mmWave systems that covers many aspects of the technology targeted for beginners all the way to the advanced users. The authors are some of the most credible scholars I know of who are well respected by the industry. I highly recommend studying this book in detail.” —Ali Sadri, Ph.D., Sr. Director, Intel Corporation, MCG mmWave Standards and Advanced Technologies Millimeter wave (mmWave) is today's breakthrough frontier for emerging wireless mobile cellular networks, wireless local area networks, personal area networks, and vehicular communications. In the near future, mmWave products, systems, theories, and devices will come together to deliver mobile data rates thousands of times faster than today's existing cellular and WiFi networks. In Millimeter Wave Wireless Communications, four of the field's pioneers draw on their immense experience as researchers, entrepreneurs, inventors, and consultants, empowering engineers at all levels to succeed with mmWave. They deliver exceptionally clear and useful guidance for newcomers, as well as the first complete desk reference for design experts. The authors explain mmWave signal propagation, mmWave circuit design, antenna designs, communication theory, and current standards (including IEEE 802.15.3c, Wireless HD, and ECMA/WiMedia). They cover comprehensive mmWave wireless design issues, for 60 GHz and other mmWave bands, from channel to antenna to receiver, introducing emerging design techniques that will be invaluable for research engineers in both industry and academia. Topics include Fundamentals: communication theory, channel propagation, circuits, antennas, architectures, capabilities, and applications Digital communication: baseband signal/channel models, modulation, equalization, error control coding, multiple input multiple output (MIMO) principles, and hardware architectures Radio wave propagation characteristics: indoor and outdoor applications Antennas/antenna arrays, including on-chip and in-package antennas, fabrication, and packaging Analog circuit design: mmWave transistors, fabrication, and transceiver design approaches Baseband circuit design: multi–gigabit-per-second, high-fidelity DAC and ADC converters Physical layer: algorithmic choices, design considerations, and impairment solutions; and how to overcome clipping, quantization, and nonlinearity Higher-layer design: beam adaptation protocols, relaying, multimedia transmission, and multiband considerations 60 GHz standardization: IEEE 802.15.3c for WPAN, Wireless HD, ECMA-387, IEEE 802.11ad, Wireless Gigabit Alliance (WiGig)




Multi-gigabit Microwave and Millimeter-wave Wireless Communications


Book Description

For decades, microwave radios in the 6 to 50 GHz bands have been providing wireless communications. Exploring this area, this resource offers the details on multigigabit wireless communications.




Millimeter-Wave Circuits for 5G and Radar


Book Description

Discover the concepts, architectures, components, tools, and techniques needed to design millimeter-wave circuits for current and emerging wireless system applications. Focusing on applications in 5G, connectivity, radar, and more, leading experts in radio frequency integrated circuit (RFIC) design provide a comprehensive treatment of cutting-edge physical-layer technologies for radio frequency (RF) transceivers - specifically RF, analog, mixed-signal, and digital circuits and architectures. The full design chain is covered, from system design requirements through to building blocks, transceivers, and process technology. Gain insight into the key novelties of 5G through authoritative chapters on massive MIMO and phased arrays, and learn about the very latest technology developments, such as FinFET logic process technology for RF and millimeter-wave applications. This is an essential reading and an excellent reference for high-frequency circuit designers in both academia and industry.




Millimeter-Wave Antennas: Configurations and Applications


Book Description

This book comprehensively reviews the state of the art in millimeter-wave antennas, traces important recent developments and provides information on a wide range of antenna configurations and applications. While fundamental theoretical aspects are discussed whenever necessary, the book primarily focuses on design principles and concepts, manufacture, measurement techniques, and practical results. Each of the various antenna types scalable to millimeter-wave dimensions is considered individually, with coverage of leaky-wave and surface-wave antennas, printed antennas, integrated antennas, and reflector and lens systems. The final two chapters address the subject from a systems perspective, providing an overview of supporting circuitry and examining in detail diverse millimeter-wave applications, including high-speed wireless communications, radio astronomy, and radar. The vast amount of information now available on millimeter-wave systems can be daunting for researchers and designers entering the field. This book offers readers essential guidance, helping them to gain a thorough understanding based on the most recent research findings and serving as a sound basis for informed decision-making.




Millimeter-Wave Integrated Circuits


Book Description

This peer-reviewed book explores the methodologies that are used for effective research, design and innovation in the vast field of millimeter-wave circuits, and describes how these have to be modified to fit the uniqueness of high-frequency nanoelectronics design. Each chapter focuses on a specific research challenge related to either small form factors or higher operating frequencies. The book first examines nanodevice scaling and the emerging electronic design automation tools that can be used in millimeter-wave research, as well as the singular challenges of combining deep-submicron and millimeter-wave design. It also demonstrates the importance of considering, in the millimeter-wave context, system-level design leading to differing packaging options. Further, it presents integrated circuit design methodologies for all major transceiver blocks typically employed at millimeter-wave frequencies, as these methodologies are normally fundamentally different from the traditional design methodologies used in analogue and lower-frequency electronics. Lastly, the book discusses the methodologies of millimeter-wave research and design for extreme or harsh environments, rebooting electronics, the additional opportunities for terahertz research, and the main differences between the approaches taken in millimeter-wave research and terahertz research.




Infrared and Millimeter Waves V4


Book Description

Infrared and Millimeter Waves is a series of books that compiles the work of several authors, with each volume focusing on certain aspects of infrared and millimeter waves, such as sources of radiation, instrumentation, and millimeter systems. This book concerns itself with millimeter systems. Comprised of seven chapters, this book discusses several systems that involve the use of millimeter waves, such as radars and missile guidance systems. The first chapter provides a comprehensive overview of millimeter waves, while the succeeding chapter discusses several technologies that involve millimeter systems, such as radar, missile guidance, and imaging systems. This book will be of great use to researchers and professionals whose work involves infrared and millimeter waves.




Millimeter-Wave Low Noise Amplifiers


Book Description

This book is the first standalone book that combines research into low-noise amplifiers (LNAs) with research into millimeter-wave circuits. In compiling this book, the authors have set two research objectives. The first is to bring together the research context behind millimeter-wave circuit operation and the theory of low-noise amplification. The second is to present new research in this multi-disciplinary field by dividing the common LNA configurations and typical specifications into subsystems, which are then optimized separately to suggest improvements in the current state-of-the-art designs. To achieve the second research objective, the state-of-the-art LNA configurations are discussed and the weaknesses of state-of the art configurations are considered, thus identifying research gaps. Such research gaps, among others, point towards optimization – at a systems and microelectronics level. Optimization topics include the influence of short wavelength, layout and crosstalk on LNA performance. Advanced fabrication technologies used to decrease the parasitics of passive and active devices are also explored, together with packaging technologies such as silicon-on-chip and silicon-on-package, which are proposed as alternatives to traditional IC implementation. This research outcome builds through innovation. Innovative ideas for LNA construction are explored, and alternative design methodologies are deployed, including LNA/antenna co-design or utilization of the electronic design automation in the research flow. The book also offers the authors’ proposal for streamlined automated LNA design flow, which focuses on LNA as a collection of highly optimized subsystems.