Foundations and Interpretation of Quantum Mechanics


Book Description

The aim of this book is twofold: to provide a comprehensive account of the foundations of the theory and to outline a theoretical and philosophical interpretation suggested from the results of the last twenty years.There is a need to provide an account of the foundations of the theory because recent experience has largely confirmed the theory and offered a wealth of new discoveries and possibilities. On the other side, the following results have generated a new basis for discussing the problem of the interpretation: the new developments in measurement theory; the experimental generation of ?Schr”dinger cats?; recent developments which allow, for the first time, the simultaneous measurement of complementary observables; quantum information processing, teleportation and computation.To accomplish this task, the book combines historical, systematic and thematic approaches.




Foundations of Quantum Mechanics


Book Description

Authored by an acclaimed teacher of quantum physics and philosophy, this textbook pays special attention to the aspects that many courses sweep under the carpet. Traditional courses in quantum mechanics teach students how to use the quantum formalism to make calculations. But even the best students - indeed, especially the best students - emerge rather confused about what, exactly, the theory says is going on, physically, in microscopic systems. This supplementary textbook is designed to help such students understand that they are not alone in their confusions (luminaries such as Albert Einstein, Erwin Schroedinger, and John Stewart Bell having shared them), to sharpen their understanding of the most important difficulties associated with interpreting quantum theory in a realistic manner, and to introduce them to the most promising attempts to formulate the theory in a way that is physically clear and coherent. The text is accessible to students with at least one semester of prior exposure to quantum (or "modern") physics and includes over a hundred engaging end-of-chapter "Projects" that make the book suitable for either a traditional classroom or for self-study.




Quantum Information Theory and the Foundations of Quantum Mechanics


Book Description

Christopher G. Timpson provides the first full-length philosophical treatment of quantum information theory and the questions it raises for our understanding of the quantum world. He argues for an ontologically deflationary account of the nature of quantum information, which is grounded in a revisionary analysis of the concepts of information.




Foundations of Quantum Theory


Book Description

This book studies the foundations of quantum theory through its relationship to classical physics. This idea goes back to the Copenhagen Interpretation (in the original version due to Bohr and Heisenberg), which the author relates to the mathematical formalism of operator algebras originally created by von Neumann. The book therefore includes comprehensive appendices on functional analysis and C*-algebras, as well as a briefer one on logic, category theory, and topos theory. Matters of foundational as well as mathematical interest that are covered in detail include symmetry (and its "spontaneous" breaking), the measurement problem, the Kochen-Specker, Free Will, and Bell Theorems, the Kadison-Singer conjecture, quantization, indistinguishable particles, the quantum theory of large systems, and quantum logic, the latter in connection with the topos approach to quantum theory. This book is Open Access under a CC BY licence.




Information Theory and Quantum Physics


Book Description

In this highly readable book, H.S. Green, a former student of Max Born and well known as an author in physics and in the philosophy of science, presents a timely analysis of theoretical physics and related fundamental problems.




The Structure and Interpretation of Quantum Mechanics


Book Description

This important work provides an account of the philosophical foundations of quantum theory that should become a classic text for scientists and nonscientists alike. Hughes offers the first detailed and accessible analysis of the Hilbert-space models used in quantum theory and explains why they are so successful. He goes on to show how the very suitability of Hilbert spaces for modeling the quantum world gives rise to deep problems of interpretation, and makes suggestions about how they can be overcome.




Mathematical Foundations of Quantum Mechanics


Book Description

A revolutionary book that for the first time provided a rigorous mathematical framework for quantum mechanics. -- Google books




Do We Really Understand Quantum Mechanics?


Book Description

Gives an overview of the quantum theory and its main interpretations. Ideal for researchers in physics and mathematics.




The Quantum Mechanics Conundrum


Book Description

This comprehensive volume gives a balanced and systematic treatment of both the interpretation and the mathematical-conceptual foundations of quantum mechanics. It is written in a pedagogical style and addresses many thorny problems of fundamental physics. The first aspect concerns Interpretation. The author raises the central problems: formalism, measurement, non-locality, and causality. The main positions on these subjects are presented and critically analysed. The aim is to show that the main schools can converge on a core interpretation. The second aspect concerns Foundations. Here it is shown that the whole theory can be grounded on information theory. The distinction between information and signal leads us to integrating quantum mechanics and relativity. Category theory is presented and its significance for quantum information shown; the logic and epistemological bases of the theory are assessed. Of relevance to all physicists and philosophers with an interest in quantum theory and its foundations, this book is destined to become a classic work.




Mathematical Foundations of Quantum Theory


Book Description

Mathematical Foundations of Quantum Theory is a collection of papers presented at the 1977 conference on the Mathematical Foundations of Quantum Theory, held in New Orleans. The contributors present their topics from a wide variety of backgrounds and specialization, but all shared a common interest in answering quantum issues. Organized into 20 chapters, this book's opening chapters establish a sound mathematical basis for quantum theory and a mode of observation in the double slit experiment. This book then describes the Lorentz particle system and other mathematical structures with which fundamental quantum theory must deal, and then some unsolved problems in the quantum logic approach to the foundations of quantum mechanics are considered. Considerable chapters cover topics on manuals and logics for quantum mechanics. This book also examines the problems in quantum logic, and then presents examples of their interpretation and relevance to nonclassical logic and statistics. The accommodation of conventional Fermi-Dirac and Bose-Einstein statistics in quantum mechanics or quantum field theory is illustrated. The final chapters of the book present a system of axioms for nonrelativistic quantum mechanics, with particular emphasis on the role of density operators as states. Specific connections of this theory with other formulations of quantum theory are also considered. These chapters also deal with the determination of the state of an elementary quantum mechanical system by the associated position and momentum distribution. This book is of value to physicists, mathematicians, and researchers who are interested in quantum theory.