Foundations for Industrial Machines


Book Description

The performance, safety and stability of machines depends largely on their design, manufacturing and interaction with environment. Machine foundations should be designed in such a way that the dynamic forces transmitted to the soil through the foundation, eliminating all potentially harmful forces. This handbook is designed primarily for the practising engineers engaged in design of machine foundations. It covers basic fundamentals for understanding and evaluating dynamic response of machine foundation systems with emphasis is on detailed dynamic analysis for response evaulation. Use of commercially available Finite Element packages, for analysis and design of the foundation, is recommended. Theory is supported by results from practice in the form of examples.




Design of Structures and Foundations for Vibrating Machines


Book Description

This text brings together traditional and new concepts and procedures for analyzing and designing dynamically loaded structures.




Handbook of Machine Foundations


Book Description

Imperfect designing of machine foundations based on empirical formulations has led to the problem of troublesome vibrations in the existing foundations. Recent developments in the field of structural and soil dynamics have helped establish basic design principles for various types of machine foundations. In order to achieve efficiency and economy in the design, it is imperative that the designer have an in depth knowledge of various aspects of analysis, design and construction of machine foundations




Construction Management and Design of Industrial Concrete and Steel Structures


Book Description

The recent worldwide boom in industrial construction and the corresponding billions of dollars spent every year in industrial, oil, gas, and petrochemical and power generation project, has created fierce competition for these projects. Strong management and technical competence will bring your projects in on time and on budget. An in-depth explorat




Foundations of Mechanical Accuracy


Book Description

In his introduction to this book, George R. Harrison, Dean Emeritus of M.I.T.'s School of Science, writes as follows: "Basic to man's behavior is his ability to determine, modify, and adapt to his environment. This he has been able to do in proportion to his skill at making measurements, and fundamental to all other measuring operations is his ability to determine locations in the material world. Thus the science of mechanical measurements is a fundamental one. It is this science, and the art which accompanies and informs it, with which this book is concerned." This is the third book produced by the , Inc., of Bridgeport, Connecticut. Like all of its products, the book is marked by a clean precision of design and execution. The firm has built a worldwide reputation since 1924, both as a manufacturer of special tooling to extremely close accuracies and of machine tools that make possible a very high degree of precision. Wayne R. Moore has assembled in the 350 pages of Foundations of Mechanical Accuracythe company's intimate knowledge of and experience with mechanical accuracy, and how to achieve it. He has illustrated his text with over 500 original photographs and drawings. This book tells how to attain precision in manufacturing to millionths of an inch and how to control such precision by appropriate measuring techniques. The book is divided into four main sections: geometry, standards of length, dividing the circle, and roundness. A fifth section covers "Universal Measuring Machine Techniques and Applications." The book is printed in two colors throughout, and interspersed with full-page, full-color plates.




Basics of Foundation Design


Book Description

The "Red Book" presents a background to conventional foundation analysis and design. The text is not intended to replace the much more comprehensive 'standard' textbooks, but rather to support and augment these in a few important areas, supplying methods applicable to practical cases handled daily by practising engineers and providing the basic soil mechanics background to those methods. It concentrates on the static design for stationary foundation conditions. Although the topic is far from exhaustively treated, it does intend to present most of the basic material needed for a practising engineer involved in routine geotechnical design, as well as provide the tools for an engineering student to approach and solve common geotechnical design problems.




Foundations of Engineering Acoustics


Book Description

Foundations of Engineering Acoustics takes the reader on a journey from a qualitative introduction to the physical nature of sound, explained in terms of common experience, to mathematical models and analytical results which underlie the techniques applied by the engineering industry to improve the acoustic performance of their products. The book is distinguished by extensive descriptions and explanations of audio-frequency acoustic phenomena and their relevance to engineering, supported by a wealth of diagrams, and by a guide for teachers of tried and tested class demonstrations and laboratory-based experiments. Foundations of Engineering Acoustics is a textbook suitable for both senior undergraduate and postgraduate courses in mechanical, aerospace, marine, and possibly electrical and civil engineering schools at universities. It will be a valuable reference for academic teachers and researchers and will also assist Industrial Acoustic Group staff and Consultants. - Comprehensive and up-to-date: broad coverage, many illustrations, questions, elaborated answers, references and a bibliography - Introductory chapter on the importance of sound in technology and the role of the engineering acoustician - Deals with the fundamental concepts, principles, theories and forms of mathematical representation, rather than methodology - Frequent reference to practical applications and contemporary technology - Emphasizes qualitative, physical introductions to each principal as an entrée to mathematical analysis for the less theoretically oriented readers and courses - Provides a 'cook book' of demonstrations and laboratory-based experiments for teachers - Useful for discussing acoustical problems with non-expert clients/managers because the descriptive sections are couched in largely non-technical language and any jargon is explained - Draws on the vast pedagogic experience of the writer




Dynamics of Machinery


Book Description

Dynamic loads and undesired oscillations increase with higher speed of machines. At the same time, industrial safety standards require better vibration reduction. This book covers model generation, parameter identification, balancing of mechanisms, torsional and bending vibrations, vibration isolation, and the dynamic behavior of drives and machine frames as complex systems. Typical dynamic effects, such as the gyroscopic effect, damping and absorption, shocks, resonances of higher order, nonlinear and self-excited vibrations are explained using practical examples. These include manipulators, flywheels, gears, mechanisms, motors, rotors, hammers, block foundations, presses, high speed spindles, cranes, and belts. Various design features, which influence the dynamic behavior, are described. The book includes 60 exercises with detailed solutions. The substantial benefit of this "Dynamics of Machinery" lies in the combination of theory and practical applications and the numerous descriptive examples based on real-world data. The book addresses graduate students as well as engineers.







Ensemble Methods


Book Description

An up-to-date, self-contained introduction to a state-of-the-art machine learning approach, Ensemble Methods: Foundations and Algorithms shows how these accurate methods are used in real-world tasks. It gives you the necessary groundwork to carry out further research in this evolving field. After presenting background and terminology, the book covers the main algorithms and theories, including Boosting, Bagging, Random Forest, averaging and voting schemes, the Stacking method, mixture of experts, and diversity measures. It also discusses multiclass extension, noise tolerance, error-ambiguity and bias-variance decompositions, and recent progress in information theoretic diversity. Moving on to more advanced topics, the author explains how to achieve better performance through ensemble pruning and how to generate better clustering results by combining multiple clusterings. In addition, he describes developments of ensemble methods in semi-supervised learning, active learning, cost-sensitive learning, class-imbalance learning, and comprehensibility enhancement.