Foundations of Analysis


Book Description

Foundations of Analysis has two main goals. The first is to develop in students the mathematical maturity and sophistication they will need as they move through the upper division curriculum. The second is to present a rigorous development of both single and several variable calculus, beginning with a study of the properties of the real number system. The presentation is both thorough and concise, with simple, straightforward explanations. The exercises differ widely in level of abstraction and level of difficulty. They vary from the simple to the quite difficult and from the computational to the theoretical. Each section contains a number of examples designed to illustrate the material in the section and to teach students how to approach the exercises for that section. --Book cover.







Algebraic Foundations of Many-Valued Reasoning


Book Description

This unique textbook states and proves all the major theorems of many-valued propositional logic and provides the reader with the most recent developments and trends, including applications to adaptive error-correcting binary search. The book is suitable for self-study, making the basic tools of many-valued logic accessible to students and scientists with a basic mathematical knowledge who are interested in the mathematical treatment of uncertain information. Stressing the interplay between algebra and logic, the book contains material never before published, such as a simple proof of the completeness theorem and of the equivalence between Chang's MV algebras and Abelian lattice-ordered groups with unit - a necessary prerequisite for the incorporation of a genuine addition operation into fuzzy logic. Readers interested in fuzzy control are provided with a rich deductive system in which one can define fuzzy partitions, just as Boolean partitions can be defined and computed in classical logic. Detailed bibliographic remarks at the end of each chapter and an extensive bibliography lead the reader on to further specialised topics.




Foundations of Analysis


Book Description




Foundations of Abstract Analysis


Book Description

Foundations of Abstract Analysis is the first of a two book series offered as the second (expanded) edition to the previously published text Real Analysis. It is written for a graduate-level course on real analysis and presented in a self-contained way suitable both for classroom use and for self-study. While this book carries the rigor of advanced modern analysis texts, it elaborates the material in much greater details and therefore fills a gap between introductory level texts (with topics developed in Euclidean spaces) and advanced level texts (exclusively dealing with abstract spaces) making it accessible for a much wider interested audience. To relieve the reader of the potential overload of new words, definitions, and concepts, the book (in its unique feature) provides lists of new terms at the end of each section, in a chronological order. Difficult to understand abstract notions are preceded by informal discussions and blueprints followed by thorough details and supported by examples and figures. To further reinforce the text, hints and solutions to almost a half of more than 580 problems are provided at the end of the book, still leaving ample exercises for assignments. This volume covers topics in point-set topology and measure and integration. Prerequisites include advanced calculus, linear algebra, complex variables, and calculus based probability.




Foundations of Mathematical Analysis


Book Description

Foundations of Mathematical Analysis covers a wide variety of topics that will be of great interest to students of pure mathematics or mathematics and philosophy. Aimed principally at graduate and advanced undergraduate students, its primary goal is to discuss the fundamental number systems, N, Z, Q, R, and C, in the context of the branches of mathematics for which they form a starting point; for example, a study of the natural numbers leads on to logic (via Gödel's theorems), and of the real numbers (as constructed by Cauchy) to metric spaces and topology. The author offers a refreshingly original and accessible approach, presenting standard material in new ways and incorporating less mainstream topics such as long real and rational lines and the p-adic numbers. With a discussion of constructivism and independence questions, including Suslin's problem and the continuum hypothesis, the author completes a wide-ranging consideration of the development of mathematics from the very beginning, concentrating on the foundational issues particularly related to analysis.







New Foundations in Mathematics


Book Description

The first book of its kind, New Foundations in Mathematics: The Geometric Concept of Number uses geometric algebra to present an innovative approach to elementary and advanced mathematics. Geometric algebra offers a simple and robust means of expressing a wide range of ideas in mathematics, physics, and engineering. In particular, geometric algebra extends the real number system to include the concept of direction, which underpins much of modern mathematics and physics. Much of the material presented has been developed from undergraduate courses taught by the author over the years in linear algebra, theory of numbers, advanced calculus and vector calculus, numerical analysis, modern abstract algebra, and differential geometry. The principal aim of this book is to present these ideas in a freshly coherent and accessible manner. New Foundations in Mathematics will be of interest to undergraduate and graduate students of mathematics and physics who are looking for a unified treatment of many important geometric ideas arising in these subjects at all levels. The material can also serve as a supplemental textbook in some or all of the areas mentioned above and as a reference book for professionals who apply mathematics to engineering and computational areas of mathematics and physics.




Foundations of Algebraic Specification and Formal Software Development


Book Description

This book provides foundations for software specification and formal software development from the perspective of work on algebraic specification, concentrating on developing basic concepts and studying their fundamental properties. These foundations are built on a solid mathematical basis, using elements of universal algebra, category theory and logic, and this mathematical toolbox provides a convenient language for precisely formulating the concepts involved in software specification and development. Once formally defined, these notions become subject to mathematical investigation, and this interplay between mathematics and software engineering yields results that are mathematically interesting, conceptually revealing, and practically useful. The theory presented by the authors has its origins in work on algebraic specifications that started in the early 1970s, and their treatment is comprehensive. This book contains five kinds of material: the requisite mathematical foundations; traditional algebraic specifications; elements of the theory of institutions; formal specification and development; and proof methods. While the book is self-contained, mathematical maturity and familiarity with the problems of software engineering is required; and in the examples that directly relate to programming, the authors assume acquaintance with the concepts of functional programming. The book will be of value to researchers and advanced graduate students in the areas of programming and theoretical computer science.




The Number Systems: Foundations of Algebra and Analysis


Book Description

The subject of this book is the successive construction and development of the basic number systems of mathematics: positive integers, integers, rational numbers, real numbers, and complex numbers. This second edition expands upon the list of suggestions for further reading in Appendix III. From the Preface: ``The present book basically takes for granted the non-constructive set-theoretical foundation of mathematics, which is tacitly if not explicitly accepted by most working mathematicians but which I have since come to reject. Still, whatever one's foundational views, students must be trained in this approach in order to understand modern mathematics. Moreover, most of the material of the present book can be modified so as to be acceptable under alternative constructive and semi-constructive viewpoints, as has been demonstrated in more advanced texts and research articles.''