Foundations of Data Intensive Applications


Book Description

PEEK “UNDER THE HOOD” OF BIG DATA ANALYTICS The world of big data analytics grows ever more complex. And while many people can work superficially with specific frameworks, far fewer understand the fundamental principles of large-scale, distributed data processing systems and how they operate. In Foundations of Data Intensive Applications: Large Scale Data Analytics under the Hood, renowned big-data experts and computer scientists Drs. Supun Kamburugamuve and Saliya Ekanayake deliver a practical guide to applying the principles of big data to software development for optimal performance. The authors discuss foundational components of large-scale data systems and walk readers through the major software design decisions that define performance, application type, and usability. You???ll learn how to recognize problems in your applications resulting in performance and distributed operation issues, diagnose them, and effectively eliminate them by relying on the bedrock big data principles explained within. Moving beyond individual frameworks and APIs for data processing, this book unlocks the theoretical ideas that operate under the hood of every big data processing system. Ideal for data scientists, data architects, dev-ops engineers, and developers, Foundations of Data Intensive Applications: Large Scale Data Analytics under the Hood shows readers how to: Identify the foundations of large-scale, distributed data processing systems Make major software design decisions that optimize performance Diagnose performance problems and distributed operation issues Understand state-of-the-art research in big data Explain and use the major big data frameworks and understand what underpins them Use big data analytics in the real world to solve practical problems




Designing Data-Intensive Applications


Book Description

Data is at the center of many challenges in system design today. Difficult issues need to be figured out, such as scalability, consistency, reliability, efficiency, and maintainability. In addition, we have an overwhelming variety of tools, including relational databases, NoSQL datastores, stream or batch processors, and message brokers. What are the right choices for your application? How do you make sense of all these buzzwords? In this practical and comprehensive guide, author Martin Kleppmann helps you navigate this diverse landscape by examining the pros and cons of various technologies for processing and storing data. Software keeps changing, but the fundamental principles remain the same. With this book, software engineers and architects will learn how to apply those ideas in practice, and how to make full use of data in modern applications. Peer under the hood of the systems you already use, and learn how to use and operate them more effectively Make informed decisions by identifying the strengths and weaknesses of different tools Navigate the trade-offs around consistency, scalability, fault tolerance, and complexity Understand the distributed systems research upon which modern databases are built Peek behind the scenes of major online services, and learn from their architectures




Foundations for Architecting Data Solutions


Book Description

While many companies ponder implementation details such as distributed processing engines and algorithms for data analysis, this practical book takes a much wider view of big data development, starting with initial planning and moving diligently toward execution. Authors Ted Malaska and Jonathan Seidman guide you through the major components necessary to start, architect, and develop successful big data projects. Everyone from CIOs and COOs to lead architects and developers will explore a variety of big data architectures and applications, from massive data pipelines to web-scale applications. Each chapter addresses a piece of the software development life cycle and identifies patterns to maximize long-term success throughout the life of your project. Start the planning process by considering the key data project types Use guidelines to evaluate and select data management solutions Reduce risk related to technology, your team, and vague requirements Explore system interface design using APIs, REST, and pub/sub systems Choose the right distributed storage system for your big data system Plan and implement metadata collections for your data architecture Use data pipelines to ensure data integrity from source to final storage Evaluate the attributes of various engines for processing the data you collect




Morgan Kaufmann series in data management systems


Book Description

This text represents a breakthrough in the process underlying the design of the increasingly common and important data-driven Web applications.




Software Engineering for Variability Intensive Systems


Book Description

This book addresses the challenges in the software engineering of variability-intensive systems. Variability-intensive systems can support different usage scenarios by accommodating different and unforeseen features and qualities. The book features academic and industrial contributions that discuss the challenges in developing, maintaining and evolving systems, cloud and mobile services for variability-intensive software systems and the scalability requirements they imply. The book explores software engineering approaches that can efficiently deal with variability-intensive systems as well as applications and use cases benefiting from variability-intensive systems.




Data-Intensive Text Processing with MapReduce


Book Description

Our world is being revolutionized by data-driven methods: access to large amounts of data has generated new insights and opened exciting new opportunities in commerce, science, and computing applications. Processing the enormous quantities of data necessary for these advances requires large clusters, making distributed computing paradigms more crucial than ever. MapReduce is a programming model for expressing distributed computations on massive datasets and an execution framework for large-scale data processing on clusters of commodity servers. The programming model provides an easy-to-understand abstraction for designing scalable algorithms, while the execution framework transparently handles many system-level details, ranging from scheduling to synchronization to fault tolerance. This book focuses on MapReduce algorithm design, with an emphasis on text processing algorithms common in natural language processing, information retrieval, and machine learning. We introduce the notion of MapReduce design patterns, which represent general reusable solutions to commonly occurring problems across a variety of problem domains. This book not only intends to help the reader "think in MapReduce", but also discusses limitations of the programming model as well. Table of Contents: Introduction / MapReduce Basics / MapReduce Algorithm Design / Inverted Indexing for Text Retrieval / Graph Algorithms / EM Algorithms for Text Processing / Closing Remarks




The Future Of Fusion Energy


Book Description

'The text provides an interesting history of previous and anticipated accomplishments, ending with a chapter on the relationship of fusion power to nuclear weaponry. They conclude on an optimistic note, well worth being understood by the general public.'CHOICEThe gap between the state of fusion energy research and public understanding is vast. In an entertaining and engaging narrative, this popular science book gives readers the basic tools to understand how fusion works, its potential, and contemporary research problems.Written by two young researchers in the field, The Future of Fusion Energy explains how physical laws and the Earth's energy resources motivate the current fusion program — a program that is approaching a critical point. The world's largest science project and biggest ever fusion reactor, ITER, is nearing completion. Its success could trigger a worldwide race to build a power plant, but failure could delay fusion by decades. To these ends, this book details how ITER's results could be used to design an economically competitive power plant as well as some of the many alternative fusion concepts.




Mastering Cloud Computing


Book Description

Mastering Cloud Computing is designed for undergraduate students learning to develop cloud computing applications. Tomorrow's applications won’t live on a single computer but will be deployed from and reside on a virtual server, accessible anywhere, any time. Tomorrow's application developers need to understand the requirements of building apps for these virtual systems, including concurrent programming, high-performance computing, and data-intensive systems. The book introduces the principles of distributed and parallel computing underlying cloud architectures and specifically focuses on virtualization, thread programming, task programming, and map-reduce programming. There are examples demonstrating all of these and more, with exercises and labs throughout. Explains how to make design choices and tradeoffs to consider when building applications to run in a virtual cloud environment Real-world case studies include scientific, business, and energy-efficiency considerations




The Data Model Resource Book, Volume 1


Book Description

A quick and reliable way to build proven databases for core business functions Industry experts raved about The Data Model Resource Book when it was first published in March 1997 because it provided a simple, cost-effective way to design databases for core business functions. Len Silverston has now revised and updated the hugely successful 1st Edition, while adding a companion volume to take care of more specific requirements of different businesses. This updated volume provides a common set of data models for specific core functions shared by most businesses like human resources management, accounting, and project management. These models are standardized and are easily replicated by developers looking for ways to make corporate database development more efficient and cost effective. This guide is the perfect complement to The Data Model Resource CD-ROM, which is sold separately and provides the powerful design templates discussed in the book in a ready-to-use electronic format. A free demonstration CD-ROM is available with each copy of the print book to allow you to try before you buy the full CD-ROM.




The Algorithmic Foundations of Differential Privacy


Book Description

The problem of privacy-preserving data analysis has a long history spanning multiple disciplines. As electronic data about individuals becomes increasingly detailed, and as technology enables ever more powerful collection and curation of these data, the need increases for a robust, meaningful, and mathematically rigorous definition of privacy, together with a computationally rich class of algorithms that satisfy this definition. Differential Privacy is such a definition. The Algorithmic Foundations of Differential Privacy starts out by motivating and discussing the meaning of differential privacy, and proceeds to explore the fundamental techniques for achieving differential privacy, and the application of these techniques in creative combinations, using the query-release problem as an ongoing example. A key point is that, by rethinking the computational goal, one can often obtain far better results than would be achieved by methodically replacing each step of a non-private computation with a differentially private implementation. Despite some powerful computational results, there are still fundamental limitations. Virtually all the algorithms discussed herein maintain differential privacy against adversaries of arbitrary computational power -- certain algorithms are computationally intensive, others are efficient. Computational complexity for the adversary and the algorithm are both discussed. The monograph then turns from fundamentals to applications other than query-release, discussing differentially private methods for mechanism design and machine learning. The vast majority of the literature on differentially private algorithms considers a single, static, database that is subject to many analyses. Differential privacy in other models, including distributed databases and computations on data streams, is discussed. The Algorithmic Foundations of Differential Privacy is meant as a thorough introduction to the problems and techniques of differential privacy, and is an invaluable reference for anyone with an interest in the topic.