Foundations of electromagnetic theory
Author : John R. Reitz
Publisher :
Page : 435 pages
File Size : 47,36 MB
Release : 1974
Category :
ISBN :
Author : John R. Reitz
Publisher :
Page : 435 pages
File Size : 47,36 MB
Release : 1974
Category :
ISBN :
Author : Donald G. Dudley
Publisher : Wiley-IEEE Press
Page : 264 pages
File Size : 18,25 MB
Release : 1994-05-18
Category : Science
ISBN : 9780780310223
Co-published with Oxford University Press. This highly technical and thought-provoking book stresses the development of mathematical foundations for the application of the electromagnetic model to problems of research and technology. Features include in-depth coverage of linear spaces, Green's functions, spectral expansions, electromagnetic source representations, and electromagnetic boundary value problems. This book will be of interest graduate-level students in engineering, electromagnetics, physics, and applied mathematics as well as to research engineers, physicists, and scientists.
Author : Bogdan Adamczyk
Publisher : John Wiley & Sons
Page : 646 pages
File Size : 24,8 MB
Release : 2017-05-01
Category : Science
ISBN : 1119120780
There is currently no single book that covers the mathematics, circuits, and electromagnetics backgrounds needed for the study of electromagnetic compatibility (EMC). This book aims to redress the balance by focusing on EMC and providing the background in all three disciplines. This background is necessary for many EMC practitioners who have been out of study for some time and who are attempting to follow and confidently utilize more advanced EMC texts. The book is split into three parts: Part 1 is the refresher course in the underlying mathematics; Part 2 is the foundational chapters in electrical circuit theory; Part 3 is the heart of the book: electric and magnetic fields, waves, transmission lines and antennas. Each part of the book provides an independent area of study, yet each is the logical step to the next area, providing a comprehensive course through each topic. Practical EMC applications at the end of each chapter illustrate the applicability of the chapter topics. The Appendix reviews the fundamentals of EMC testing and measurements.
Author : Michael S. Zhdanov
Publisher : Elsevier
Page : 806 pages
File Size : 44,27 MB
Release : 2017-10-26
Category : Science
ISBN : 0444638911
Foundations of Geophysical Electromagnetic Theory and Methods, Second Edition, builds on the strength of the first edition to offer a systematic exposition of geophysical electromagnetic theory and methods. This new edition highlights progress made over the last decade, with a special focus on recent advances in marine and airborne electromagnetic methods. Also included are recent case histories on practical applications in tectonic studies, mineral exploration, environmental studies and off-shore hydrocarbon exploration. The book is ideal for geoscientists working in all areas of geophysics, including exploration geophysics and applied physics, as well as graduate students and researchers working in the field of electromagnetic theory and methods. - Presents theoretical and methodological foundations of geophysical field theory - Synthesizes fundamental theory and the most recent achievements of electromagnetic (EM) geophysical methods in the framework of a unified systematic exposition - Offers a unique breadth and completeness in providing a general picture of the current state-of-the-art in EM geophysical technology - Discusses practical aspects of EM exploration for mineral and energy resources
Author : Terence William Barrett
Publisher : World Scientific
Page : 196 pages
File Size : 42,60 MB
Release : 2008-03-13
Category : Science
ISBN : 981447214X
Topological Foundations of Electromagnetism seeks a fundamental understanding of the dynamics of electromagnetism; and marshals the evidence that in certain precisely defined topological conditions, electromagnetic theory (Maxwell's theory) must be extended or generalized in order to provide an explanation and understanding of, until now, unusual electromagnetic phenomena. Key to this generalization is an understanding of the circumstances under which the so-called A potential fields have physical effects. Basic to the approach taken is that the topological composition of electromagnetic fields is the fundamental conditioner of the dynamics of these fields. The treatment of electromagnetism from, first, a topological perspective, continuing through group theory and gauge theory, to a differential calculus description is a major thread of the book. Suggestions for potential new technologies based on this new understanding and approach to conditional electromagnetism are also given.
Author : James Babington
Publisher : Mercury Learning and Information
Page : 149 pages
File Size : 38,7 MB
Release : 2016-06-09
Category : Science
ISBN : 1944534407
Basic Electromagnetic Theory is designed as a concise introduction to electromagnetic field theory emphasizing the physical foundations of the subject. It is aimed at both undergraduates and interested laypersons. It has been based on the author's experience both as a former field theorist (working on quantum electrodynamics) and currently as an applied optical physicist. As such, it covers much material from the standard university syllabus. It also develops a number of themes in greater detail, so as to cover a number of non-standard topics that provide a fuller understanding of the subject. A key aspect to the book is the macroscopic approach to the subject from the outset. Most readers will have some familiarity with the standard mathematics employed, but a review chapter is provided at the beginning to help give some guidance on these topics as they are used throughout the book. Features: •Designed as a concise introduction to electromagnetic field theory emphasizing the physical foundations of the subject •Covers a number of non-standard topics that provide a fuller understanding of the subject
Author : Carl Müller
Publisher : Springer Science & Business Media
Page : 366 pages
File Size : 30,89 MB
Release : 2013-06-29
Category : Mathematics
ISBN : 3662117738
Author : Carver A. Mead
Publisher : MIT Press
Page : 162 pages
File Size : 29,13 MB
Release : 2002-07-26
Category : Science
ISBN : 9780262632607
In this book Carver Mead offers a radically new approach to the standard problems of electromagnetic theory. Motivated by the belief that the goal of scientific research should be the simplification and unification of knowledge, he describes a new way of doing electrodynamics—collective electrodynamics—that does not rely on Maxwell's equations, but rather uses the quantum nature of matter as its sole basis. Collective electrodynamics is a way of looking at how electrons interact, based on experiments that tell us about the electrons directly. (As Mead points out, Maxwell had no access to these experiments.) The results Mead derives for standard electromagnetic problems are identical to those found in any text. Collective electrodynamics reveals, however, that quantities that we usually think of as being very different are, in fact, the same—that electromagnetic phenomena are simple and direct manifestations of quantum phenomena. Mead views his approach as a first step toward reformulating quantum concepts in a clear and comprehensible manner. The book is divided into five sections: magnetic interaction of steady currents, propagating waves, electromagnetic energy, radiation in free space, and electromagnetic interaction of atoms. In an engaging preface, Mead tells how his approach to electromagnetic theory was inspired by his interaction with Richard Feynman.
Author : Kequian Zhang
Publisher : Springer Science & Business Media
Page : 683 pages
File Size : 41,76 MB
Release : 2013-06-29
Category : Science
ISBN : 3662035537
This book is a first-year graduate text on electromagnetic fields and waves. It is the translated and revised edition of the Chinese version with the same title published by the Publishing House of Electronic Industry (PHEI) of China in 1994. The text is based on the graduate course lectures on "Advanced Elec trodynamics" given by the authors at Tsinghua University. More than 300 students from the Department of Electronic Engineering and the Depart ment of Applied Physics have taken this course during the last decade. Their particular fields are microwave and millimeterwave theory and technology, physical electronics, optoelectronics and engineering physics. As the title of the book shows, the texts and examples in the book concentrate mainly on electromagnetic theory related to microwaves and optoelectronics, or light wave technology. However, the book can also be used as an intermediate-level text or reference book on electromagnetic fields and waves for students and scientists engaged in research in neighboring fields.
Author : Michael S. Zhdanov
Publisher : Elsevier
Page : 869 pages
File Size : 37,36 MB
Release : 2009-06-12
Category : Science
ISBN : 0080931766
In this book the author presents the state-of-the-art electromagnetic (EM)theories and methods employed in EM geophysical exploration.The book brings together the fundamental theory of EM fields and the practicalaspects of EM exploration for mineral and energy resources.This text is unique in its breadth and completeness in providing anoverview of EM geophysical exploration technology. The book is divided into four parts covering the foundations of EMfield theory and its applications, and emerging geophysical methods.Part I is an introduction to the field theory required for baselineunderstanding. Part II is an overview of all the basic elements ofgeophysical EM theory, from Maxwell's fundamental equations to modernmethods of modeling the EM field in complex 3-D geoelectrical formations. Part III deals with the regularized solution of ill-posedinverse electromagnetic problems, the multidimensional migration and imaging ofelectromagnetic data, and general interpretation techniques. Part IV describes major geophysical electromagnetic methods—direct current (DC), induced polarization (IP), magnetotelluric(MT), and controlled-source electromagnetic (CSEM) methods—and covers different applications of EM methods in exploration geophysics, includingminerals and HC exploration, environmental study, and crustal study. - Presents theoretical and methodological findings, as well as examples of applications of recently developed algorithms and software in solving practical problems - Describes the practical importance of electromagnetic data through enabling discussions on a construction of a closed technological cycle, processing, analysis and three-dimensional interpretation - Updates current findings in the field, especially with MT, magnetovariational and seismo-electrical methods and the practice of 3D interpretations