Foundations of Geophysical Electromagnetic Theory and Methods


Book Description

Foundations of Geophysical Electromagnetic Theory and Methods, Second Edition, builds on the strength of the first edition to offer a systematic exposition of geophysical electromagnetic theory and methods. This new edition highlights progress made over the last decade, with a special focus on recent advances in marine and airborne electromagnetic methods. Also included are recent case histories on practical applications in tectonic studies, mineral exploration, environmental studies and off-shore hydrocarbon exploration. The book is ideal for geoscientists working in all areas of geophysics, including exploration geophysics and applied physics, as well as graduate students and researchers working in the field of electromagnetic theory and methods. Presents theoretical and methodological foundations of geophysical field theory Synthesizes fundamental theory and the most recent achievements of electromagnetic (EM) geophysical methods in the framework of a unified systematic exposition Offers a unique breadth and completeness in providing a general picture of the current state-of-the-art in EM geophysical technology Discusses practical aspects of EM exploration for mineral and energy resources




Geophysical Electromagnetic Theory and Methods


Book Description

In this book the author presents the state-of-the-art electromagnetic (EM)theories and methods employed in EM geophysical exploration.The book brings together the fundamental theory of EM fields and the practicalaspects of EM exploration for mineral and energy resources.This text is unique in its breadth and completeness in providing anoverview of EM geophysical exploration technology. The book is divided into four parts covering the foundations of EMfield theory and its applications, and emerging geophysical methods.Part I is an introduction to the field theory required for baselineunderstanding. Part II is an overview of all the basic elements ofgeophysical EM theory, from Maxwell's fundamental equations to modernmethods of modeling the EM field in complex 3-D geoelectrical formations. Part III deals with the regularized solution of ill-posedinverse electromagnetic problems, the multidimensional migration and imaging ofelectromagnetic data, and general interpretation techniques. Part IV describes major geophysical electromagnetic methods—direct current (DC), induced polarization (IP), magnetotelluric(MT), and controlled-source electromagnetic (CSEM) methods—and covers different applications of EM methods in exploration geophysics, includingminerals and HC exploration, environmental study, and crustal study. Presents theoretical and methodological findings, as well as examples of applications of recently developed algorithms and software in solving practical problems Describes the practical importance of electromagnetic data through enabling discussions on a construction of a closed technological cycle, processing, analysis and three-dimensional interpretation Updates current findings in the field, especially with MT, magnetovariational and seismo-electrical methods and the practice of 3D interpretations




Electromagnetic Methods in Applied Geophysics


Book Description

As a slag heap, the result of strip mining, creeps closer to his house in the Ohio hills, fifteen-year-old M. C. is torn between trying to get his family away and fighting for the home they love.




Electromagnetic Methods in Geophysics


Book Description

Discover the utility of four popular electromagnetic geophysical techniques In GeoRadar, FDEM, TDEM, and AEM Methods, accomplished researchers Fabio Giannino and Giovanni Leucci deliver an in-depth exploration of the theory and application of four different electromagnetic geophysical techniques: ground penetrating radar, the frequency domain electromagnetic method, the time domain electromagnetic method, and the airborne electromagnetic method. The authors offer a full description of each technique as they relate to the economics, planning, and logistics of deploying each of them on-site. The book also discusses the potential output of each method and how it can be combined with other sources of below- and above-ground information to create a digitized common point cloud containing a wide variety of data. Giannino and Leucci rely on 25 years of professional experience in over 40 countries around the world to provide readers with a fulsome description of the optimal use of GPR, FDEM, TDEM, and AEM, demonstrating their flexibility and applicability to a wide variety of use cases. Readers will also benefit from the inclusion of: A thorough introduction to electromagnetic theory, including the operative principles and theory of ground penetrating radar (GPR) and the frequency domain electromagnetic method (FDEM) An exploration of hardware architecture and surveying, including GPR, FDEM, time domain electromagnetic method (TDEM), and airborne electromagnetic (AEM) surveying A collection of case studies, including a multiple-geophysical archaeological GPR survey in Turkey and a UXO search in a building area in Italy using FDEM /li> Discussions of planning and mobilizing a campaign, the shipment and clearance of survey equipment, and managing the operative aspects of field activity Perfect for forensic and archaeological geophysicists, GeoRadar, FDEM, TDEM, and AEM Methods will also earn a place in the libraries of anyone seeking a one-stop reference for the planning and deployment of GDR, FDEM, TDEM, and AEM surveying techniques.




Geophysical Field Theory and Method, Part B


Book Description

This book contains information about the theory of electromagnetic fields in conducting mediums. It describes the theoretical foundation of electromagnetic methods used in all areas of exploration geophysics, including a study of the earth's deep layers. This book will be useful for research and exploration geophysicists, electronic engineers, and graduate and undergraduate students in university geophysics departments. . Electromagnetic fields in conducting media. Physical principles of electromagnetic methods applied in geophysics. Relationship between electromagnetic fields and parameters of a medium




Inverse Theory and Applications in Geophysics


Book Description

Geophysical Inverse Theory and Applications, Second Edition, brings together fundamental results developed by the Russian mathematical school in regularization theory and combines them with the related research in geophysical inversion carried out in the West. It presents a detailed exposition of the methods of regularized solution of inverse problems based on the ideas of Tikhonov regularization, and shows the different forms of their applications in both linear and nonlinear methods of geophysical inversion. It’s the first book of its kind to treat many kinds of inversion and imaging techniques in a unified mathematical manner.The book is divided in five parts covering the foundations of the inversion theory and its applications to the solution of different geophysical inverse problems, including potential field, electromagnetic, and seismic methods. Unique in its focus on providing a link between the methods used in gravity, electromagnetic, and seismic imaging and inversion, it represents an exhaustive treatise on inversion theory.Written by one of the world’s foremost experts, this work is widely recognized as the ultimate researcher’s reference on geophysical inverse theory and its practical scientific applications. Presents state-of-the-art geophysical inverse theory developed in modern mathematical terminology—the first to treat many kinds of inversion and imaging techniques in a unified mathematical way Provides a critical link between the methods used in gravity, electromagnetic, and seismic imaging and inversion, and represents an exhaustive treatise on geophysical inversion theory Features more than 300 illustrations, figures, charts and graphs to underscore key concepts Reflects the latest developments in inversion theory and applications and captures the most significant changes in the field over the past decade







Geophysical Inverse Theory and Regularization Problems


Book Description

This book presents state-of-the-art geophysical inverse theory developed in modern mathematical terminology. The book brings together fundamental results developed by the Russian mathematical school in regularization theory and combines them with the related research in geophysical inversion carried out in the West. It presents a detailed exposition of the methods of regularized solution of inverse problems based on the ideas of Tikhonov regularization, and shows the different forms of their applications in both linear and nonlinear methods of geophysical inversion. This text is the first to treat many kinds of inversion and imaging techniques in a unified mathematical manner. The book is divided in five parts covering the foundations of the inversion theory and its applications to the solution of different geophysical inverse problems, including potential field, electromagnetic, and seismic methods. The first part is an introduction to inversion theory. The second part contains a description of the basic methods of solution of the linear and nonlinear inverse problems using regularization. The following parts treat the application of regularization methods in gravity and magnetic, electromagnetic, and seismic inverse problems. The key connecting idea of these applied parts of the book is the analogy between the solutions of the forward and inverse problems in different geophysical methods. The book also includes chapters related to the modern technology of geophysical imaging, based on seismic and electromagnetic migration. This volume is unique in its focus on providing a link between the methods used in gravity, electromagnetic, and seismic imaging and inversion, and represents an exhaustive treatise on inversion theory.




The Magnetotelluric Method


Book Description

The magnetotelluric method is a technique for imaging the electrical conductivity and structure of the Earth, from the near surface down to the 410 km transition zone and beyond. This book forms the first comprehensive overview of magnetotellurics, from the salient physics and its mathematical representation to practical implementation in the field, data processing, modeling and geological interpretation. Electromagnetic induction in 1-D, 2-D and 3-D media is explored, building from first principles, and with thorough coverage of the practical techniques of time series processing, distortion, numerical modeling and inversion. The fundamental principles are illustrated with a series of case histories describing geological applications. Technical issues, instrumentation and field practices are described for both land and marine surveys. This book provides a rigorous introduction to magnetotellurics for academic researchers and advanced students, and will be of interest to industrial practitioners and geoscientists wanting to incorporate rock conductivity into their interpretations.




Theory and Application of Spectral Induced Polarization


Book Description

The authors review spectral induced polarization theory and describe some of the SIP method's applications through a discussion of their research in the People's Republic of China. In the first of four chapters, they discuss the electrochemical basis of SIP, offering proof of the validity of using the Cole-Cole model for describing complex resistivity spectra. In the next chapter, which addresses the SIP forward problem, they describe the scale-modeling laws for SIP, various forward algorithms, the behavior and variation laws of SIP anomalies, and effective SIP parameters. The third chapter discusses SIP inversion methods, including several methods of calculating the intrinsic spectral parameters of a polarizable body. In the final chapter, the authors describe their field tests applying the SIP method to prospecting for orebodies and oil and gas reservoirs. The material is introduced in part through a reprinting of a 1959 paper by Volume Editor James R. Wait titled 'The Variable Frequency Method."