Nonlinear Analysis


Book Description

Contents: Fixed Point Theory and Nonlinear Problems (Th Rassias)Global Linearization Iterative Methods and Nonlinear Partial Differential Equations III (M Altman)On Generalized Power Series and Generalized Operational Calculus and Its Application (M Al-Bassam)Multiple Solutions to Parametrized Nonlinear Differential Systems from Nielsen Fixed Point Theory (R Brown)The topology of Ind-Affine Sets (P Cherenack)Almost Approximately Polynomial Functions (P Cholewa)Cohomology Classes and Foliated Manifolds (M Craioveanu & M Puta)Bifurcation and Nonlinear Instability in Applied Mathematics (L Debnath)The Stability of Weakly Additive Functional (H Drljevic)Index Theory for G-Bundle Pairs with Applications to Borsuk-Ulam Type Theorems for G-Sphere Bundles (E Fadell & S Husseini)Nonlinear Approximation and Moment Problem (J S Hwang & G D Lin)Periods in Equicontinuous Topological Dynamical Systems (A Iwanik et al.)Continuation Theorems for Semi-Linear Equations in Banach Spaces: A Survey (J Mawhin & K Rybakowski)On Contractifiable Self-Mappings (P Meyers)Normal Structures and Nonexpansive Mappings in Banach Spaces (J Nelson et al.): Survey on Uniqueness and Classification Theorems for Minimal Surfaces (Th Rassias)Contractive Definitions (B Rhoades)On KY Fan's Theorem and Its Applications (S Singh)Fixed Points of Amenable Semigroups of Differentiable Operators (P Soardi)Research Problems on Nonlinear Equations (Th Rassias) Readership: Mathematicians and applied scientists. Keywords:Nonlinear Analysis;Nonlinear Partial Differential Equations III;Polynomial Functions;Cohomology Classes;Foliated Manifolds;Topological Dynamical Systems;Minimal Surfaces;Differentiable Operators;Nonlinear Equations







Global Analysis on Open Manifolds


Book Description

Global analysis is the analysis on manifolds. Since the middle of the sixties there exists a highly elaborated setting if the underlying manifold is compact, evidence of which can be found in index theory, spectral geometry, the theory of harmonic maps, many applications to mathematical physics on closed manifolds like gauge theory, Seiberg-Witten theory, etc. If the underlying manifold is open, i.e. non-compact and without boundary, then most of the foundations and of the great achievements fail. Elliptic operators are no longer Fredholm, the analytical and topological indexes are not defined, the spectrum of self-adjoint elliptic operators is no longer discrete, functional spaces strongly depend on the operators involved and the data from geometry, many embedding and module structure theorems do not hold, manifolds of maps are not defined, etc. It is the goal of this new book to provide serious foundations for global analysis on open manifolds, to discuss the difficulties and special features which come from the openness and to establish many results and applications on this basis.




Encyclopedic Dictionary of Mathematics


Book Description

V.1. A.N. v.2. O.Z. Apendices and indexes.




Topics in Nonlinear Analysis & Applications


Book Description

This book develops methods which explore some new interconnections and interrelations between Analysis and Topology and their applications. Emphasis is given to several recent results which have been obtained mainly during the last years and which cannot be found in other books in Nonlinear Analysis. Interest in this subject area has rapidly increased over the last decade, yet the presentation of research has been confined mainly to journal articles.




Nonlinear Analysis and Continuum Mechanics


Book Description

The chapters in this volume deal with four fields with deep historical roots that remain active areas reasearch: partial differential equations, variational methods, fluid mechanics, and thermodynamics. The collection is intended to serve two purposes: First, to honor James Serrin, in whose work the four fields frequently interacted; and second, to bring together work in fields that are usually pursued independently but that remain remarkably interrelated. Serrin's contributions to mathematical analysis and its applications are fundamental and include such theorems and methods as the Gilbarg- Serrin theorem on isoated singularities, the Serrin symmetry theorem, the Alexandrov-Serrin moving-plane technique, The Peletier-Serrin uniqueness theorem, and the Serrin integal of the calculus of variations. Serrin has also been noted for the elegance of his mathematical work and for the effectiveness of his teaching and collaborations.




Nonlinear Functional Analysis


Book Description

This book is based on the lectures presented at the Special Session on Nonlinear Functional Analysis of the American Mathematical Society Regional Meeting, held at New Jersey Institute of Technology. It explores global invertibility and finite solvability of nonlinear differential equations.




Nonlinear Functional Analysis


Book Description




Nonlinear Functional Analysis and its Applications


Book Description

As long as a branch of knowledge offers an abundance of problems, it is full of vitality. David Hilbert Over the last 15 years I have given lectures on a variety of problems in nonlinear functional analysis and its applications. In doing this, I have recommended to my students a number of excellent monographs devoted to specialized topics, but there was no complete survey-type exposition of nonlinear functional analysis making available a quick survey to the wide range of readers including mathematicians, natural scientists, and engineers who have only an elementary knowledge of linear functional analysis. I have tried to close this gap with my five-part lecture notes, the first three parts of which have been published in the Teubner-Texte series by Teubner-Verlag, Leipzig, 1976, 1977, and 1978. The present English edition was translated from a completely rewritten manuscript which is significantly longer than the original version in the Teubner-Texte series. The material is organized in the following way: Part I: Fixed Point Theorems. Part II: Monotone Operators. Part III: Variational Methods and Optimization. Parts IV jV: Applications to Mathematical Physics. The exposition is guided by the following considerations: (a) What are the supporting basic ideas and what intrinsic interrelations exist between them? (/3) In what relation do the basic ideas stand to the known propositions of classical analysis and linear functional analysis? ( y) What typical applications are there? Vll Preface viii Special emphasis is placed on motivation.




Fundamental Concepts In Modern Analysis: An Introduction To Nonlinear Analysis (Second Edition)


Book Description

Many applied mathematical disciplines, such as dynamical systems and optimization theory as well as classical mathematical disciplines like differential geometry and the theory of Lie groups, have a common foundation in general topology and multivariate calculus in normed vector spaces. In this book, students from both pure and applied subjects are offered an opportunity to work seriously with fundamental notions from mathematical analysis that are important not only from a mathematical point of view but also occur frequently in the theoretical parts of, for example, the engineering sciences. The book provides complete proofs of the basic results from topology and differentiability of mappings in normed vector spaces. It is a useful resource for students and researchers in mathematics and the many sciences that depend on fundamental techniques from mathematical analysis.In this second edition, the notions of compactness and sequentially compactness are developed with independent proofs for the main results. Thereby the material on compactness is apt for direct applications also in functional analysis, where the notion of sequentially compactness prevails. This edition also covers a new section on partial derivatives, and new material has been incorporated to make a more complete account of higher order derivatives in Banach spaces, including full proofs for symmetry of higher order derivatives and Taylor's formula. The exercise material has been reorganized from a collection of problem sets at the end of the book to a section at the end of each chapter with further results. Readers will find numerous new exercises at different levels of difficulty for practice.