Strengthening Forensic Science in the United States


Book Description

Scores of talented and dedicated people serve the forensic science community, performing vitally important work. However, they are often constrained by lack of adequate resources, sound policies, and national support. It is clear that change and advancements, both systematic and scientific, are needed in a number of forensic science disciplines to ensure the reliability of work, establish enforceable standards, and promote best practices with consistent application. Strengthening Forensic Science in the United States: A Path Forward provides a detailed plan for addressing these needs and suggests the creation of a new government entity, the National Institute of Forensic Science, to establish and enforce standards within the forensic science community. The benefits of improving and regulating the forensic science disciplines are clear: assisting law enforcement officials, enhancing homeland security, and reducing the risk of wrongful conviction and exoneration. Strengthening Forensic Science in the United States gives a full account of what is needed to advance the forensic science disciplines, including upgrading of systems and organizational structures, better training, widespread adoption of uniform and enforceable best practices, and mandatory certification and accreditation programs. While this book provides an essential call-to-action for congress and policy makers, it also serves as a vital tool for law enforcement agencies, criminal prosecutors and attorneys, and forensic science educators.







Foundry Technology


Book Description




Principles of Metal Casting


Book Description




Metals Abstracts


Book Description







Advancing Silicon Carbide Electronics Technology II


Book Description

The book presents an in-depth review and analysis of Silicon Carbide device processing. The main topics are: (1) Silicon Carbide Discovery, Properties and Technology, (2) Processing and Application of Dielectrics in Silicon Carbide Devices, (3) Doping by Ion Implantation, (4) Plasma Etching and (5) Fabrication of Silicon Carbide Nanostructures and Related Devices. The book is also suited as supplementary textbook for graduate courses. Keywords: Silicon Carbide, SiC, Technology, Processing, Semiconductor Devices, Material Properties, Polytypism, Thermal Oxidation, Post Oxidation Annealing, Surface Passivation, Dielectric Deposition, Field Effect Mobility, Ion Implantation, Post Implantation Annealing, Channeling, Surface Roughness, Dry Etching, Plasma Etching, Ion Etching, Sputtering, Chemical Etching, Plasma Chemistry, Micromasking, Microtrenching, Nanocrystal, Nanowire, Nanotube, Nanopillar, Nanoelectromechanical Systems (NEMS).







Compound Semiconductor Integrated Circuits


Book Description

This is the book version of a special issue of the International Journal of High Speed Electronics and Systems, reviewing recent work in the field of compound semiconductor integrated circuits. There are fourteen invited papers covering a wide range of applications, frequencies and materials. These papers deal with digital, analog, microwave and millimeter-wave technologies, devices and integrated circuits for wireline fiber-optic lightwave transmissions, and wireless radio-frequency microwave and millimeter-wave communications. In each case, the market is young and experiencing rapid growth for both commercial and millitary applications. Many new semiconductor technologies compete for these new markets, leading to an alphabet soup of semiconductor materials described in these papers. Contents: Present and Future of High-Speed Compound Semiconductor IC's (T Otsuji); Transforming MMIC (E J Martinez); Distributed Amplifier for Fiber-Optic Communication Systems (H Shigematsu et al.); Microwave GaN-Based Power Transistors on Large-Scale Silicon Wafers (S Manohar et al.); Radiation Effects in High Speed III-V Integrated Circuits (T R Weatherford); Radiation Effects in III-V Semiconductor Electronics (B D Weaver et al.); Reliability and Radiation Hardness of Compound Semiconductors (S A Kayali & A H Johnston); and other papers. Readership: Engineers, scientists and graduate students working on high speed electronics and systems, and in the area of compound semiconductor integrated circuits.