Fourier Transforms in NMR, Optical, and Mass Spectrometry


Book Description

Written by spectroscopists for spectroscopists, here is a book which is not only a valuable handbook and reference work, but also an ideal teaching text for Fourier transform methods as they are applied in spectroscopy. It offers the first unified treatment of the three most popular types of FT/spectroscopy, with uniform notation and complete indexing of specialized terms. All mathematics is self-contained, and requires only a knowledge of simple calculus. The main emphasis is on pictures and physical analogs rather than detailed algebra. Instructive problems, presented at the end of each chapter, offer extensions of the basic treatment. Solutions are given or outlined for all problems.The book offers a wealth of practical information to spectroscopists. Non-ideal effects are treated in detail: noise (source- and detector-limited); non-linear response; limits to spectrometer performance based on finite detection period, finite data size, mis-phasing, etc. Common puzzles and paradoxes are explained: e.g. use of mathematically complex variables to represent physically real quantities; interpretation of negative frequency signals; on-resonance vs. off-resonance response; interpolation (when it helps and when it doesn't); ultimate accuracy of the data; differences between linearly- and circularly-polarized radiation; multiplex advantage or disadvantage, etc.Chapter 1 introduces the fundamental line shapes encountered in spectroscopy, from a simple classical mass-on-a-spring model. The Fourier transform relationship between the time-domain response to a sudden impulse and the steady-state frequency-domain response (absorption and dispersion spectra) to a continuous oscillation is established and illustrated. Chapters 2 and 3 summarize the basic mathematics (definitions, formulas, theorems, and examples) for continuous (analog) and discrete (digital) Fourier transforms, and their practical implications. Experimental aspects which are common to the signal (Chapter 4) and noise (Chapter 5) in all forms of Fourier transform spectrometry are followed by separate chapters for treatment of those features which are unique to FT/MS, FT/optical, FT/NMR, and other types of FT/spectroscopy.The list of references includes both historical and comprehensive reviews and monographs, along with articles describing several key developments. The appendices provide instant access to FT integrals and fast algorithms as well as a pictorial library of common Fourier transform function pairs. The comprehensive index is designed to enable the reader to locate particular key words, including those with more than one name.




Fourier Transforms in NMR, Optical, and Mass Spectrometry


Book Description

Written by spectroscopists for spectroscopists, here is a book which is not only a valuable handbook and reference work, but also an ideal teaching text for Fourier transform methods as they are applied in spectroscopy. It offers the first unified treatment of the three most popular types of FT/spectroscopy, with uniform notation and complete indexing of specialized terms. All mathematics is self-contained, and requires only a knowledge of simple calculus. The main emphasis is on pictures and physical analogs rather than detailed algebra. Instructive problems, presented at the end of each chapter, offer extensions of the basic treatment. Solutions are given or outlined for all problems. The book offers a wealth of practical information to spectroscopists. Non-ideal effects are treated in detail: noise (source- and detector-limited); non-linear response; limits to spectrometer performance based on finite detection period, finite data size, mis-phasing, etc. Common puzzles and paradoxes are explained: e.g. use of mathematically complex variables to represent physically real quantities; interpretation of negative frequency signals; on-resonance vs. off-resonance response; interpolation (when it helps and when it doesn't); ultimate accuracy of the data; differences between linearly- and circularly-polarized radiation; multiplex advantage or disadvantage, etc. Chapter 1 introduces the fundamental line shapes encountered in spectroscopy, from a simple classical mass-on-a-spring model. The Fourier transform relationship between the time-domain response to a sudden impulse and the steady-state frequency-domain response (absorption and dispersion spectra) to a continuous oscillation is established and illustrated. Chapters 2 and 3 summarize the basic mathematics (definitions, formulas, theorems, and examples) for continuous (analog) and discrete (digital) Fourier transforms, and their practical implications. Experimental aspects which are common to the signal (Chapter 4) and noise (Chapter 5) in all forms of Fourier transform spectrometry are followed by separate chapters for treatment of those features which are unique to FT/MS, FT/optical, FT/NMR, and other types of FT/spectroscopy. The list of references includes both historical and comprehensive reviews and monographs, along with articles describing several key developments. The appendices provide instant access to FT integrals and fast algorithms as well as a pictorial library of common Fourier transform function pairs. The comprehensive index is designed to enable the reader to locate particular key words, including those with more than one name.




Fundamentals and Applications of Fourier Transform Mass Spectrometry


Book Description

Fundamentals and Applications of Fourier Transform Mass Spectrometry is the first book to delve into the underlying principles on the topic and their linkage to industrial applications. Drs. Schmitt-Kopplin and Kanawati have brought together a team of leading experts in their respective fields to present this technique from many different perspectives, describing, at length, the pros and cons of FT-ICR and Orbitrap. Numerous examples help researchers decide which instruments to use for their particular scientific problem and which data analysis methods should be applied to get the most out of their data. - Covers FT-ICR-MS and Orbitrap's fundamentals, enhancing researcher knowledge - Includes details on ion sources, data processing, chemical analysis and imaging - Provides examples across the wide spectrum of applications, including omics, environmental, chemical, pharmaceutical and food analysis




Fourier Transforms in Spectroscopy


Book Description

This modern approach to the subject is clearly and logically structured, and gives readers an understanding of the essence of Fourier transforms and their applications. All important aspects are included with respect to their use with optical spectroscopic data. Based on popular lectures, the authors provide the mathematical fundamentals and numerical applications which are essential in practical use. The main part of the book is dedicated to applications of FT in signal processing and spectroscopy, with IR and NIR, NMR and mass spectrometry dealt with both from a theoretical and practical point of view. Some aspects, linear prediction for example, are explained here thoroughly for the first time.




Fourier Transform


Book Description

The field of signal processing has seen explosive growth during the past decades; almost all textbooks on signal processing have a section devoted to the Fourier transform theory. For this reason, this book focuses on the Fourier transform applications in signal processing techniques. The book chapters are related to DFT, FFT, OFDM, estimation techniques and the image processing techqniques. It is hoped that this book will provide the background, references and the incentive to encourage further research and results in this area as well as provide tools for practical applications. It provides an applications-oriented to signal processing written primarily for electrical engineers, communication engineers, signal processing engineers, mathematicians and graduate students will also find it useful as a reference for their research activities.




Signal Treatment and Signal Analysis in NMR


Book Description

Signal analysis and signal treatment are integral parts of all types of Nuclear Magnetic Resonance. In the last ten years, much has been achieved in the development of dimensional spectra. At the same time new NMR techniques such as NMR Imaging and multidimensional spectroscopy have appeared, requiring entirely new methods of signal analysis. Up until now, most NMR texts and reference books limited their presentation of signal processing to a short introduction to the principles of the Fourier Transform, signal convolution, apodisation and noise reduction. To understand the mathematics of the newer signal processing techniques, it was necessary to go back to the primary references in NMR, chemometrics and mathematics journals. The objective of this book is to fill this void by presenting, in a single volume, both the theory and applications of most of these new techniques to Time-Domain, Frequency-Domain and Space-Domain NMR signals. Details are provided on many of the algorithms used and a companion CD-ROM is also included which contains some of the computer programs, either as source code or in executable form. Although it is aimed primarily at NMR users in the medical, industrial and academic fields, it should also interest chemometricians and programmers working with other techniques.




Mass Spectrometry in the Biological Sciences: A Tutorial


Book Description

The developments in mass spectrometry over the past fifteen years have been impressive in their implications in bioanalytical chemistry. The achievements begin with the inventions of Cf-252 Plasma Desorption Mass Spectrometry by Macfarlane and Fourier Transform Mass Spectrometry by Comisarow and Marshall in the mid 1970s. The former showed the feasibility of producing large gas-phase ions from large biomolecules whereas the latter enhanced the capabilities for ion trapping especially in analytical mass spectrometry. A major achievement was the development by Barber of Fast Atom Bombardment (FAB) mass spectrometry, an advance that heralded a new era in biological mass spectrometry. Contemporary and routine instruments such as magnetic sectors and quadrupoles were rapidly adapted to F AB, and nearly the entire universe of small molecules became amenable to study by mass spectrometry. The introduction of FAB also paved the way for improvement of instrument capability. For example, the upper mass limit of magnet sector mass spectrometers was increased by nearly an order of magnitude by the instrument manufacturers. Furthermore, the technique of tandem mass spectrometry (MS/MS) was given new meaning because important structural information for biomolecules could now be produced for ions introduced by FAB into the tandem instrument. The evolution of MS/MS continues today with the development of ion traps, time-of-flight, and sector instruments equipped with array detection.




Emerging Technologies in Protein and Genomic Material Analysis


Book Description

It is widely recognized that analytical technologies and techniques are playing a pioneering role in a range of today's foremost challenging scientific endeavours, including especially biological and biomedical research. Worthy of mention, for example, are the role that high performance separation techniques played in mapping the human genome and the pioneering work done within mass spectrometry. It is also apparent that state-of-the-art pharmaceutical and biomedical research is the major driving force of the development of new analytical techniques. Advancements in genomics research has provided the opportunity for a call for new drug targets for new technologies, which has speeded up drug discovery and helped to counteract the trend towards inflation of R&D costs.This book has been designed to be a reference covering a wide range of protein and genomic material analysis techniques. Emerging developments are presented with applications where relevant, and biological examples are included. It was developed to meet the ever growing need for a comprehensive and balanced text on an analytical technique which has generated a tremendous amount of interest in recent years.In addition, this book also serves as a modern textbook for advanced undergraduate and graduate courses in various disciplines including chemistry, biology and pharmacy.Authors of the individual chapters are recognized champions of their individual research disciplines and also represent contemporary major research centres in this field.·Contains state-of-the-art knowledge of the field and detailed descriptions of new technologies·Provides examples of relevant applications and case studies·Contributing authors are leading scientists in their own respective research fields




Pharmacognosy


Book Description

Pharmacognosy: Fundamentals, Applications and Strategies, Second Edition represents a comprehensive compilation of the philosophical, scientific and technological aspects of contemporary pharmacognosy. The book examines the impact of the advanced techniques of pharmacognosy on improving the quality, safety and effectiveness of traditional medicines, and how pharmacokinetics and pharmacodynamics have a crucial role to play in discerning the relationships of active metabolites to bioavailability and function at the active sites, as well as the metabolism of plant constituents. Structured in seven parts, the book covers the foundational aspects of Pharmacognosy, the chemistry of plant metabolites, their effects, other sources of metabolites, crude drugs from animals, basic animal anatomy and physiology, technological applications and biotechnology, and the current trends in research. New to this edition is a chapter on plant metabolites and SARS-Cov-2, extensive updates on existing chapters and the development of a Laboratory Guide to support instructors execute practical activities on the laboratory setting. Covers the main sources of natural bioactive substances Contains practice questions and laboratory exercises at the end of every chapter to test learning and retention Describes how pharmacokinetics and pharmacodynamics play a crucial role in discerning the relationships of active metabolites to bioavailability and function at active sites Includes a dedicated chapter on the effect of plant metabolites on SARS-CoV-2




Electrospray and MALDI Mass Spectrometry


Book Description

Discover how advances in mass spectrometry are fueling new discoveries across a broad range of research areas Electrospray and MALDI Mass Spectrometry brings both veteran practitioners and beginning scientists up to date with the most recent trends and findings in electrospray ionization and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. In particular, this Second Edition highlights how advances in electrospray and MALDI mass spectrometry are supporting important discoveries in new and emerging fields such as proteomics and metabolomics as well as in traditional areas of chemistry and physics research. Electrospray AND MALDI Mass Spectrometry, SECOND EDITION is divided into five parts: Part A, Fundamentals of ES, explains the fundamental phenomena underlying the electrospray process, including selectivity in ionization and inherent electrochemistry, and concludes with a chapter offering a comparative inventory of source hardware Part B, Fundamentals of MALDI, confronts ionization mechanisms, instrument development, and matrix selection, and includes a final chapter that explores the special application of MALDI to obtain two-dimensional images of spatial distributions of compounds on surfaces Part C, ES and MALDI Coupling to Mass Spectrometry Instrumentation, examines the coupling of these ionization techniques to various mass analyzers, including quadrupole ion trap, time-of-flight, Fourier transform ion cyclotron resonance, and ion mobility mass spectrometers Part D, Practical Aspects of ES and MALDI, investigates analytical issues including quantification, charge-state distributions, noncovalent interactions in solution that are preserved as gas-phase ions, and various means of ion excitation in preparation for tandem mass spectrometry, and offers a guide to the interpretation of even-electron mass spectra Part E, Biological Applications of ES and MALDI, examines the role of mass spectrometry in such areas as peptide and protein characterization, carbohydrate analysis, lipid analysis, and drug discovery Written by a team of leading experts, the book not only provides a critical review of the literature, but also presents key concepts in tutorial fashion to help readers take full advantage of the latest technological breakthroughs and applications. As a result, Electrospray and MALDI Mass Spectrometry will help researchers fully leverage the power of electrospray and MALDI mass spectrometry. The judicious compartmentalization of chapters, and the pedagogic presentation style throughout, render the book highly suitable for use as a text for graduate-level courses in advanced mass spectrometry.